scholarly journals Crawling the Community Structure of Multiplex Networks

Author(s):  
Ricky Laishram ◽  
Jeremy D. Wendt ◽  
Sucheta Soundarajan

We examine the problem of crawling the community structure of a multiplex network containing multiple layers of edge relationships. While there has been a great deal of work examining community structure in general, and some work on the problem of sampling a network to preserve its community structure, to the best of our knowledge, this is the first work to consider this problem on multiplex networks. We consider the specific case in which the layers of a multiplex network have different query (collection) costs and reliabilities; and a data collector is interested in identifying the community structure of the most expensive layer. We propose MultiComSample (MCS), a novel algorithm for crawling a multiplex network. MCS uses multiple levels of multi-armed bandits to determine the best layers, communities and node roles for selecting nodes to query. We test MCS against six baseline algorithms on real-world multiplex networks, and achieved large gains in performance. For example, after consuming a budget equivalent to sampling 20% of the nodes in the expensive layer, we observe that MCS outperforms the best baseline by up to 49%.

2017 ◽  
Vol 31 (15) ◽  
pp. 1750121 ◽  
Author(s):  
Fang Hu ◽  
Youze Zhu ◽  
Yuan Shi ◽  
Jianchao Cai ◽  
Luogeng Chen ◽  
...  

In this paper, based on Walktrap algorithm with the idea of random walk, and by selecting the neighbor communities, introducing improved signed probabilistic mixture (SPM) model and considering the edges within the community as positive links and the edges between the communities as negative links, a novel algorithm Walktrap-SPM for detecting overlapping community is proposed. This algorithm not only can identify the overlapping communities, but also can greatly increase the objectivity and accuracy of the results. In order to verify the accuracy, the performance of this algorithm is tested on several representative real-world networks and a set of computer-generated networks based on LFR benchmark. The experimental results indicate that this algorithm can identify the communities accurately, and it is more suitable for overlapping community detection. Compared with Walktrap, SPM and LMF algorithms, the presented algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SPM and LMF algorithms.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Seyedsaeed Hajiseyedjavadi ◽  
Yu-Ru Lin ◽  
Konstantinos Pelechrinis

AbstractLearning low-dimensional representations of graphs has facilitated the use of traditional machine learning techniques to solving classic network analysis tasks such as link prediction, node classification, community detection, etc. However, to date, the vast majority of these learning tasks are focused on traditional single-layer/unimodal networks and largely ignore the case of multiplex networks. A multiplex network is a suitable structure to model multi-dimensional real-world complex systems. It consists of multiple layers where each layer represents a different relationship among the network nodes. In this work, we propose MUNEM, a novel approach for learning a low-dimensional representation of a multiplex network using a triplet loss objective function. In our approach, we preserve the global structure of each layer, while at the same time fusing knowledge among different layers during the learning process. We evaluate the effectiveness of our proposed method by testing and comparing on real-world multiplex networks from different domains, such as collaboration network, protein-protein interaction network, online social network. Finally, in order to deliberately examine the effect of our model’s parameters we conduct extensive experiments on synthetic multiplex networks.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-32
Author(s):  
Ricky Laishram ◽  
Jeremy D. Wendt ◽  
Sucheta Soundarajan

In this article, we consider the problem of crawling a multiplex network to identify the community structure of a layer-of-interest. A multiplex network is one where there are multiple types of relationships between the nodes. In many multiplex networks, some layers might be easier to explore (in terms of time, money etc.). We propose MCS+ , an algorithm that can use the information from the easier to explore layers to help in the exploration of a layer-of-interest that is expensive to explore. We consider the goal of exploration to be generating a sample that is representative of the communities in the complete layer-of-interest. This work has practical applications in areas such as exploration of dark (e.g., criminal) networks, online social networks, biological networks, and so on. For example, in a terrorist network, relationships such as phone records, e-mail records, and so on are easier to collect; in contrast, data on the face-to-face communications are much harder to collect, but also potentially more valuable. We perform extensive experimental evaluations on real-world networks, and we observe that MCS+ consistently outperforms the best baseline—the similarity of the sample that MCS+ generates to the real network is up to three times that of the best baseline in some networks. We also perform theoretical and experimental evaluations on the scalability of MCS+ to network properties, and find that it scales well with the budget, number of layers in the multiplex network, and the average degree in the original network.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-31
Author(s):  
Simiao Jiao ◽  
Zihui Xue ◽  
Xiaowei Chen ◽  
Yuedong Xu

Graphlets are induced subgraph patterns that are crucial to the understanding of the structure and function of a large network. A lot of effort has been devoted to calculating graphlet statistics where random walk-based approaches are commonly used to access restricted graphs through the available application programming interfaces (APIs). However, most of them merely consider individual networks while overlooking the strong coupling between different networks. In this article, we estimate the graphlet concentration in multiplex networks with real-world applications. An inter-layer edge connects two nodes in different layers if they actually belong to the same node. The access to a multiplex network is restrictive in the sense that the upper layer allows random walk sampling, whereas the nodes of lower layers can be accessed only through the inter-layer edges and only support random node or edge sampling. To cope with this new challenge, we define a suit of two-layer graphlets and propose novel random walk sampling algorithms to estimate the proportion of all the three-node graphlets. An analytical bound on the sampling steps is proved to guarantee the convergence of our unbiased estimator. We further generalize our algorithm to explore the tradeoff between the estimated accuracy of different graphlets when the sample budget is split into different layers. Experimental evaluation on real-world and synthetic multiplex networks demonstrates the accuracy and high efficiency of our unbiased estimators.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Nianwen Ning ◽  
Feiyu Long ◽  
Chunchun Wang ◽  
Youjie Zhang ◽  
Yilin Yang ◽  
...  

Many real-world complex systems have multiple types of relations between their components, and they are popularly modeled as multiplex networks with each type of relation as one layer. Since the fusion analysis of multiplex networks can provide a comprehensive insight, the structural information fusion of multiplex networks has become a crucial issue. However, most of these existing data fusion methods are inappropriate for researchers to apply to complex network analysis directly. The feature-based fusion methods ignore the sharing and complementarity of interlayer structural information. To tackle this problem, we propose a multiplex network structural fusion (MNSF) model, which can construct a network with comprehensive information. It is composed of two modules: the network feature extraction (NFE) module and the network structural fusion (NSF) module. (1) In NFE, MNSF first extracts a low-dimensional vector representation of a node from each layer. Then, we construct a node similarity network based on embedding matrices and K-D tree algorithm. (2) In NSF, we present a nonlinear enhanced iterative fusion (EIF) strategy. EIF can strengthen high-weight edges presented in one (i.e., complementary information) or more (i.e., shared information) networks and weaken low-weight edges (i.e., redundant information). The retention of low-weight edges shared by all layers depends on the tightness of connections of their K-order proximity. The usage of higher-order proximity in EIF alleviates the dependence on the quality of node embedding. Besides, the fused network can be easily exploited by traditional single-layer network analysis methods. Experiments on real-world networks demonstrate that MNSF outperforms the state-of-the-art methods in tasks link prediction and shared community detection.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nianwen Ning ◽  
Qiuyue Li ◽  
Kai Zhao ◽  
Bin Wu

Multiplex networks have been widely used in information diffusion, social networks, transport, and biology multiomics. They contain multiple types of relations between nodes, in which each type of the relation is intuitively modeled as one layer. In the real world, the formation of a type of relations may only depend on some attribute elements of nodes. Most existing multiplex network embedding methods only focus on intralayer and interlayer structural information while neglecting this dependence between node attributes and the topology of each layer. Attributes that are irrelevant to the network structure could affect the embedding quality of multiplex networks. To address this problem, we propose a novel multiplex network embedding model with high-order node dependence, called HMNE. HMNE simultaneously considers three properties: (1) intralayer high-order proximity of nodes, (2) interlayer dependence in respect of nodes, and (3) the dependence between node attributes and the topology of each layer. In the intralayer embedding phase, we present a symmetric graph convolution-deconvolution model to embed high-order proximity information as the intralayer embedding of nodes in an unsupervised manner. In the interlayer embedding phase, we estimate the local structural complementarity of nodes as an embedding constraint of interlayer dependence. Through these two phases, we can achieve the disentangled representation of node attributes, which can be treated as fined-grained semantic dependence on the topology of each layer. In the restructure phase of node attributes, we perform a linear fusion of attribute disentangled representations for each node as a reconstruction of original attributes. Extensive experiments have been conducted on six real-world networks. The experimental results demonstrate that the proposed model outperforms the state-of-the-art methods in cross-domain link prediction and shared community detection tasks.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Dana Vaknin ◽  
Bnaya Gross ◽  
Sergey V. Buldyrev ◽  
Shlomo Havlin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Hossein Jafari ◽  
Amir Mahdi Abdolhosseini-Qomi ◽  
Masoud Asadpour ◽  
Maseud Rahgozar ◽  
Naser Yazdani

AbstractThe entities of real-world networks are connected via different types of connections (i.e., layers). The task of link prediction in multiplex networks is about finding missing connections based on both intra-layer and inter-layer correlations. Our observations confirm that in a wide range of real-world multiplex networks, from social to biological and technological, a positive correlation exists between connection probability in one layer and similarity in other layers. Accordingly, a similarity-based automatic general-purpose multiplex link prediction method—SimBins—is devised that quantifies the amount of connection uncertainty based on observed inter-layer correlations in a multiplex network. Moreover, SimBins enhances the prediction quality in the target layer by incorporating the effect of link overlap across layers. Applying SimBins to various datasets from diverse domains, our findings indicate that SimBins outperforms the compared methods (both baseline and state-of-the-art methods) in most instances when predicting links. Furthermore, it is discussed that SimBins imposes minor computational overhead to the base similarity measures making it a potentially fast method, suitable for large-scale multiplex networks.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-35
Author(s):  
Matteo Magnani ◽  
Obaida Hanteer ◽  
Roberto Interdonato ◽  
Luca Rossi ◽  
Andrea Tagarelli

A multiplex network models different modes of interaction among same-type entities. In this article, we provide a taxonomy of community detection algorithms in multiplex networks. We characterize the different algorithms based on various properties and we discuss the type of communities detected by each method. We then provide an extensive experimental evaluation of the reviewed methods to answer three main questions: to what extent the evaluated methods are able to detect ground-truth communities, to what extent different methods produce similar community structures, and to what extent the evaluated methods are scalable. One goal of this survey is to help scholars and practitioners to choose the right methods for the data and the task at hand, while also emphasizing when such choice is problematic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Léo Pio-Lopez ◽  
Alberto Valdeolivas ◽  
Laurent Tichit ◽  
Élisabeth Remy ◽  
Anaïs Baudot

AbstractNetwork embedding approaches are gaining momentum to analyse a large variety of networks. Indeed, these approaches have demonstrated their effectiveness in tasks such as community detection, node classification, and link prediction. However, very few network embedding methods have been specifically designed to handle multiplex networks, i.e. networks composed of different layers sharing the same set of nodes but having different types of edges. Moreover, to our knowledge, existing approaches cannot embed multiple nodes from multiplex-heterogeneous networks, i.e. networks composed of several multiplex networks containing both different types of nodes and edges. In this study, we propose MultiVERSE, an extension of the VERSE framework using Random Walks with Restart on Multiplex (RWR-M) and Multiplex-Heterogeneous (RWR-MH) networks. MultiVERSE is a fast and scalable method to learn node embeddings from multiplex and multiplex-heterogeneous networks. We evaluate MultiVERSE on several biological and social networks and demonstrate its performance. MultiVERSE indeed outperforms most of the other methods in the tasks of link prediction and network reconstruction for multiplex network embedding, and is also efficient in link prediction for multiplex-heterogeneous network embedding. Finally, we apply MultiVERSE to study rare disease-gene associations using link prediction and clustering. MultiVERSE is freely available on github at https://github.com/Lpiol/MultiVERSE.


Sign in / Sign up

Export Citation Format

Share Document