scholarly journals Multi-Label Classification Neural Networks with Hard Logical Constraints

2021 ◽  
Vol 72 ◽  
pp. 759-818
Author(s):  
Eleonora Giunchiglia ◽  
Thomas Lukasiewicz

Multi-label classification (MC) is a standard machine learning problem in which a data point can be associated with a set of classes. A more challenging scenario is given by hierarchical multi-label classification (HMC) problems, in which every prediction must satisfy a given set of hard constraints expressing subclass relationships between classes. In this article, we propose C-HMCNN(h), a novel approach for solving HMC problems, which, given a network h for the underlying MC problem, exploits the hierarchy information in order to produce predictions coherent with the constraints and to improve performance. Furthermore, we extend the logic used to express HMC constraints in order to be able to specify more complex relations among the classes and propose a new model CCN(h), which extends C-HMCNN(h) and is again able to satisfy and exploit the constraints to improve performance. We conduct an extensive experimental analysis showing the superior performance of both C-HMCNN(h) and CCN(h) when compared to state-of-the-art models in both the HMC and the general MC setting with hard logical constraints.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.



2021 ◽  
Vol 42 (12) ◽  
pp. 124101
Author(s):  
Thomas Hirtz ◽  
Steyn Huurman ◽  
He Tian ◽  
Yi Yang ◽  
Tian-Ling Ren

Abstract In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technologies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the ability to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data. We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device engineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experimentation infrastructure.



2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Nalindren Naicker ◽  
Timothy Adeliyi ◽  
Jeanette Wing

Educational Data Mining (EDM) is a rich research field in computer science. Tools and techniques in EDM are useful to predict student performance which gives practitioners useful insights to develop appropriate intervention strategies to improve pass rates and increase retention. The performance of the state-of-the-art machine learning classifiers is very much dependent on the task at hand. Investigating support vector machines has been used extensively in classification problems; however, the extant of literature shows a gap in the application of linear support vector machines as a predictor of student performance. The aim of this study was to compare the performance of linear support vector machines with the performance of the state-of-the-art classical machine learning algorithms in order to determine the algorithm that would improve prediction of student performance. In this quantitative study, an experimental research design was used. Experiments were set up using feature selection on a publicly available dataset of 1000 alpha-numeric student records. Linear support vector machines benchmarked with ten categorical machine learning algorithms showed superior performance in predicting student performance. The results of this research showed that features like race, gender, and lunch influence performance in mathematics whilst access to lunch was the primary factor which influences reading and writing performance.



Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 98 ◽  
Author(s):  
Tariq Ahmad ◽  
Allan Ramsay ◽  
Hanady Ahmed

Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms.



2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mariano Di Martino ◽  
Peter Quax ◽  
Wim Lamotte

Zero-rating is a technique where internet service providers (ISPs) allow consumers to utilize a specific website without charging their internet data plan. Implementing zero-rating requires an accurate website identification method that is also efficient and reliable to be applied on live network traffic. In this paper, we examine existing website identification methods with the objective of applying zero-rating. Furthermore, we demonstrate the ineffectiveness of these methods against modern encryption protocols such as Encrypted SNI and DNS over HTTPS and therefore show that ISPs are not able to maintain the current zero-rating approaches in the forthcoming future. To address this concern, we present “Open-Knock,” a novel approach that is capable of accurately identifying a zero-rated website, thwarts free-riding attacks, and is sustainable on the increasingly encrypted web. In addition, our approach does not require plaintext protocols or preprocessed fingerprints upfront. Finally, our experimental analysis unveils that we are able to convert each IP address to the correct domain name for each website in the Tranco top 6000 websites list with an accuracy of 50.5% and therefore outperform the current state-of-the-art approaches.



2016 ◽  
Vol 21 (9) ◽  
pp. 998-1003 ◽  
Author(s):  
Oliver Dürr ◽  
Beate Sick

Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening–based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.



1998 ◽  
Vol 9 ◽  
pp. 317-365 ◽  
Author(s):  
G. Di Caro ◽  
M. Dorigo

This paper introduces AntNet, a novel approach to the adaptive learning of routing tables in communications networks. AntNet is a distributed, mobile agents based Monte Carlo system that was inspired by recent work on the ant colony metaphor for solving optimization problems. AntNet's agents concurrently explore the network and exchange collected information. The communication among the agents is indirect and asynchronous, mediated by the network itself. This form of communication is typical of social insects and is called stigmergy. We compare our algorithm with six state-of-the-art routing algorithms coming from the telecommunications and machine learning fields. The algorithms' performance is evaluated over a set of realistic testbeds. We run many experiments over real and artificial IP datagram networks with increasing number of nodes and under several paradigmatic spatial and temporal traffic distributions. Results are very encouraging. AntNet showed superior performance under all the experimental conditions with respect to its competitors. We analyze the main characteristics of the algorithm and try to explain the reasons for its superiority.



Author(s):  
Afshin Rahimi ◽  
Mofiyinoluwa O. Folami

As the number of satellite launches increases each year, it is only natural that an interest in the safety and monitoring of these systems would increase as well. However, as a system becomes more complex, generating a high-fidelity model that accurately describes the system becomes complicated. Therefore, imploring a data-driven method can provide to be more beneficial for such applications. This research proposes a novel approach for data-driven machine learning techniques on the detection and isolation of nonlinear systems, with a case-study for an in-orbit closed loop-controlled satellite with reaction wheels as actuators. High-fidelity models of the 3-axis controlled satellite are employed to generate data for both nominal and faulty conditions of the reaction wheels. The generated simulation data is used as input for the isolation method, after which the data is pre-processed through feature extraction from a temporal, statistical, and spectral domain. The pre-processed features are then fed into various machine learning classifiers. Isolation results are validated with cross-validation, and model parameters are tuned using hyperparameter optimization. To validate the robustness of the proposed method, it is tested on three characterized datasets and three reaction wheel configurations, including standard four-wheel, three-orthogonal, and pyramid. The results prove superior performance isolation accuracy for the system under study compared to previous studies using alternative methods (Rahimi & Saadat, 2019, 2020).



2021 ◽  
Vol 2042 (1) ◽  
pp. 012002
Author(s):  
Roberto Castello ◽  
Alina Walch ◽  
Raphaël Attias ◽  
Riccardo Cadei ◽  
Shasha Jiang ◽  
...  

Abstract The integration of solar technology in the built environment is realized mainly through rooftop-installed panels. In this paper, we leverage state-of-the-art Machine Learning and computer vision techniques applied on overhead images to provide a geo-localization of the available rooftop surfaces for solar panel installation. We further exploit a 3D building database to associate them to the corresponding roof geometries by means of a geospatial post-processing approach. The stand-alone Convolutional Neural Network used to segment suitable rooftop areas reaches an intersection over union of 64% and an accuracy of 93%, while a post-processing step using building database improves the rejection of false positives. The model is applied to a case study area in the canton of Geneva and the results are compared with another recent method used in the literature to derive the realistic available area.



2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Md Zahangir Alom ◽  
Paheding Sidike ◽  
Mahmudul Hasan ◽  
Tarek M. Taha ◽  
Vijayan K. Asari

In spite of advances in object recognition technology, handwritten Bangla character recognition (HBCR) remains largely unsolved due to the presence of many ambiguous handwritten characters and excessively cursive Bangla handwritings. Even many advanced existing methods do not lead to satisfactory performance in practice that related to HBCR. In this paper, a set of the state-of-the-art deep convolutional neural networks (DCNNs) is discussed and their performance on the application of HBCR is systematically evaluated. The main advantage of DCNN approaches is that they can extract discriminative features from raw data and represent them with a high degree of invariance to object distortions. The experimental results show the superior performance of DCNN models compared with the other popular object recognition approaches, which implies DCNN can be a good candidate for building an automatic HBCR system for practical applications.



Sign in / Sign up

Export Citation Format

Share Document