Giant Foxtail Seed Predation byHarpalus pensylvanicus(Coleoptera: Carabidae)

Weed Science ◽  
2014 ◽  
Vol 62 (4) ◽  
pp. 555-562 ◽  
Author(s):  
Meredith J. Ward ◽  
Matthew R. Ryan ◽  
William S. Curran ◽  
Jeffrey Law

The utility of biological control for weed management in agroecosystems will increase with a greater understanding of the relationships between common weed and granivore species. Giant foxtail is an introduced, summer annual grass weed that is common throughout the United States and problematic in numerous crops.Harpalus pensylvanicus(DeGeer) (Coleoptera: Carabidae) is a common, native, omnivorous carabid beetle with a range that overlaps giant foxtail. In 2004 and 2005,H. pensylvanicuswas captured from farm fields in Centre County, PA, and subjected to laboratory feeding trials to test the preference of giant foxtail and other species on predation byH. pensylvanicus. Weed species seed preference experiments that included “Choice” and “No Choice” treatments were conducted using giant foxtail, common lambsquarters, and velvetleaf. When given a choice amongst the three weed species,H. pensylvanicuspreferred giant foxtail and common lambsquarters seeds equally compared to velvetleaf seeds. When given the choice,H. pensylvanicuspreferred newly dispersed giant foxtail seeds over field-aged seeds. Phenology of giant foxtail seed shed relative toH. pensylvanicusactivity density was also quantified in field experiments in 2005 and 2006. Giant foxtail seed rain was determined by collecting shed seeds from August through October using pan traps. Activity density ofH. pensylvanicuswas monitored for 72-h periods using pitfall traps from June to October. Peak activity density ofH. pensylvanicusoccurred at the onset of giant foxtail seed shed in both years; however, giant foxtail seed shed peaked approximately 30 to 50 d afterH. pensylvanicusactivity density. Future research should focus on management practices that enhance and supportH. pensylvanicuspopulations later in the growing season to maximize suppression of giant foxtail and other weeds that shed palatable seeds later in the season.

Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Charles L. Mohler ◽  
Javaid Iqbal ◽  
Jianying Shen ◽  
Antonio DiTommaso

Recovery of common agricultural weeds after burial by soil was studied in four greenhouse and three field experiments. Species studied included velvetleaf, Powell amaranth, common lambsquarters, barnyardgrass, and giant foxtail. Seedlings were bent over before burial to simulate the effect of the impact of soil thrown by a cultivator. Altogether, more than 35,000 seedlings were marked and observed for recovery. No seedlings recovered from 4 cm of burial. Recovery from complete burial under 2 cm of soil ranged from 0 to 24% depending on the experiment, species, and watering treatment, but recovery greater than 5% was rare. Large-seeded species tended to recover from complete burial under 2 cm of soil better than small-seeded species. The study did not reveal a difference in recovery of grasses relative to broadleaf weeds. Overall, seedlings tended to recover best when water was applied daily after burial, worst when water was applied once on the day of burial, and to an intermediate extent when no water was applied. However, difference in recovery between the no-water and watering-once treatments were usually small. Also, many experiment by species combinations showed no significant differences among watering treatments. When even a small portion of the seedling was left exposed, recovery generally exceeded 50%. Organic weed management systems commonly use burial of weed seedlings with tine weeders and soil thrown by sweeps and hilling disks to control weeds in crop rows. Recovery from burial could pose a substantial weed management problem in some circumstances, particularly for large-seeded weed species. Maximizing burial depth is important for limiting recovery. Recovery from burial can be minimized by withholding irrigation for several days after hilling-up operations.


2020 ◽  
Vol 34 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Jessica Quinn ◽  
Nader Soltani ◽  
Jamshid Ashigh ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractHorseweed is a competitive summer or winter annual weed that produces up to 230,000 small seeds per plant that are capable of traveling more than 500 km via wind. Giant ragweed is a tall, highly competitive summer annual weed. Glyphosate-resistant (GR) horseweed and GR giant ragweed pose significant challenges for producers in the United States and Ontario, Canada. It is thought that an integrated weed management (IWM) system involving herbicide rotation is required to control GR biotypes. Halauxifen-methyl is a new selective broadleaf POST herbicide registered for use in cereal crops; there is limited information on its efficacy on horseweed and giant ragweed. The purpose of this research was to determine the efficacy of halauxifen-methyl applied POST, alone and in a tank mix, for the control of GR horseweed and GR giant ragweed in wheat across southwestern Ontario. For each weed species, an efficacy study consisting of six field experiments was conducted over a 2-yr period (2018, 2019). At 8 wk after application (WAA), halauxifen-methyl, fluroxypyr/halauxifen-methyl, fluroxypyr/halauxifen-methyl + MCPA EHE, fluroxypyr + MCPA ester, 2,4-D ester, clopyralid, and pyrasulfotole/bromoxynil + ammonium sulfate controlled GR horseweed >95%. Fluroxypyr and MCPA provided only 86% and 37% control of GR horseweed, respectively. At 8 WAA, fluroxypyr, fluroxypyr/halauxifen-methyl, fluroxypyr/halauxifen-methyl + MCPA EHE, fluroxypyr + MCPA ester, fluroxypyr/halauxifen-methyl + MCPA EHE + pyroxsulam, 2,4-D ester, clopyralid, and thifensulfuron/tribenuron + fluroxypyr + MCPA ester controlled GR giant ragweed 87%, 88%, 90%, 94%, 96%, 96%, 98%, and 93%, respectively. Halauxifen-methyl and pyroxsulam provided only 45% and 28% control of GR giant ragweed, respectively. Halauxifen-methyl applied alone POST in the spring controlled GR horseweed but not GR giant ragweed in winter wheat.


2019 ◽  
Vol 33 (03) ◽  
pp. 448-458 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractEffective POST herbicides and herbicide mixtures are key components of integrated weed management in corn; however, herbicides vary in their efficacy based on application timing. Six field experiments were conducted over 2 yr (2017–2018) in southwestern Ontario, Canada, to determine the effects of herbicide application timing and rate on the efficacy of tolpyralate, a new 4-hydroxyphenyl pyruvate dioxygenase inhibitor. Tolpyralate at 15, 30, or 40 g ai ha−1 in combination with atrazine at 500 or 1,000 g ai ha−1 was applied PRE, early POST, mid-POST, or late POST. Tolpyralate + atrazine at rates ≥30 + 1,000 g ha−1 provided equivalent control of common lambsquarters and Powell amaranth applied PRE or POST, whereas no rate applied PRE controlled common ragweed, velvetleaf, barnyardgrass, or green foxtail. Common ragweed, common lambsquarters, velvetleaf, and Powell amaranth were controlled equally regardless of POST timing. In contrast, control of barnyardgrass and green foxtail declined when herbicide application was delayed to the late-POST timing, irrespective of herbicide rate. Similarly, corn grain yield declined within each tolpyralate + atrazine rate when herbicide applications were delayed to late-POST timing. Overall, the results of this study indicate that several monocot and dicot weed species can be controlled with tolpyralate + atrazine with an early to mid-POST herbicide application timing, before weeds reach 30 cm in height, and Powell amaranth and common lambsquarters can also be controlled PRE. Additionally, this study provides further evidence highlighting the importance of effective, early-season weed control in corn.


1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


2006 ◽  
Vol 20 (3) ◽  
pp. 751-755 ◽  
Author(s):  
K. D. Gibson ◽  
W. G. Johnson ◽  
D. E. Hillger

Corn and soybean growers across Indiana were surveyed in 2003 to determine their perceptions of the importance of weed problems in various crop rotations. Growers were asked to list the three most problematic weeds in the following rotation systems: soybean and corn planted in alternate years (SC) and corn (CC) or soybean (SS) planted to the same field for 2 or more years. Although some summer annuals and perennials (common lambsquarters, Canada thistle, and common cocklebur) and winter annuals (chickweed and henbit) were considered problematic by at least 10% of growers in all three systems, there were differences among systems in the relative importance of weed species. Giant ragweed was considered problematic by at least 30% of SC and CC growers but by less than 10% of SS growers. Horseweed was listed as a problematic summer annual by 13% of SS growers but by only 3% of CC growers. Purple deadnettle was listed by 15% of CC growers but by less than 6% of SC and SS growers. Perennial dicots were more problematic in SS than in CC. Annual and perennial grasses were more problematic in CC than in SC or SS. Despite these differences, the results of this survey suggest that the cumulative effect of weed management practices in corn and soybean rotation systems in Indiana has been the promotion of larger seeded, broadleaf, summer annual species.


Weed Science ◽  
2008 ◽  
Vol 56 (3) ◽  
pp. 400-407 ◽  
Author(s):  
Mohsen B. Mesgaran ◽  
Hamid R. Mashhadi ◽  
Mahmood Khosravi ◽  
Eskandar Zand ◽  
Hasan Mohammad-Alizadeh

Intercropping is an eco-friendly approach for reducing weed problems through nonchemical methods. Intercrop effects on weed community structure have rarely been studied. A 6-yr study was initiated in 1999 and the response of aboveground weed flora (1999–2002 and 2005) and seed bank (2005) to the intercropping of saffron and black zira, two perennial crops was investigated. Mixtures consisted of 0/100, 25/75, 50/50, 75/25, and 100/0 saffron/black zira ratios, each planted at three densities: 30, 50, and 70 plant m−2. The effect of planting density on weed populations was variable and in most cases not significant. However, mixture ratios caused drastic species compositional changes in the weed community for which univariate and multivariate analyses explored four major associations: (1) weeds that favored a higher ratio of saffron in mixtures (e.g., grasses, field bindweed, pigweeds), (2) weeds that preferred a higher ratio of black zira in mixtures (e.g., Persian speedwell, Brassicaceae complex, Polygoaceae complex, and earthsmoke), (3) weeds that were more abundant in 50/50 mixtures (e.g., Caryophyllaceae complex), and (4) weeds that showed no specific pattern (e.g., common lambsquarterss). Pigweeds, prostrate knotweed, and common lambsquarters dominated the viable seed bank with relative densities of 48, 28, and 8%, respectively. The seed bank of most weed species responded to mixture ratios in a similar manner to those of their corresponding aboveground flora. Seed density decreased as soil depth increased, leading to the accumulation of 66, 22, and 12% of viable seeds in soil layers of 0–5, 5–15 and 15–25 cm, respectively. Greater weed and seed densities were found in more pure stands of black zira. These findings contribute to improving current understanding of crop–weed community structures and may help in developing weed management practices.


2021 ◽  
pp. 1-29
Author(s):  
Victor H. V. Ribeiro ◽  
Maxwel C. Oliveira ◽  
Daniel H. Smith ◽  
Jose B. Santos ◽  
Rodrigo Werle

Amidst widespread occurrence of herbicide-resistant weeds in the United States, the use of PRE herbicides and cover crops have resurged once again as important strategies for weed management in cropping systems. The objective of this experiment was to evaluate the length of soil residual weed control from PRE soybean herbicides and the detrimental impact of these herbicides on cover crop species using field treated soil in greenhouse bioassays. Greenhouse bioassays were conducted using soil from field experiments conducted in 2018 and 2019 at Arlington and Lancaster, WI. PRE herbicides consisted of imazethapyr, chlorimuron-ethyl, and cloransulam-methyl (acetolactate synthase [ALS]-inhibitors), metribuzin (photosystem II [PSII]-inhibitor), sulfentrazone, flumioxazin, and saflufenacil (protoporphyrinogen oxidase [PPO]-inhibitors), acetochlor, S-metolachlor, dimethenamid-P, and pyroxasulfone (very long-chain fatty acid [VLCFA]-inhibitors), and a nontreated control. Greenhouse bioassays were conducted using soil (0-10 cm depth) sampled at 0, 10, 20, 30, 40 and 50 d after treatment (DAT). Palmer amaranth and giant foxtail (weeds), and radish and cereal rye (cover crops) were used as bioindicators of herbicide levels in the soil. Bioassay results showed extended soil residual control of Palmer amaranth with sulfentrazone and pyroxasulfone; extended residual control of giant foxtail was observed with pyroxasulfone and S-metolachlor. Chlorimuron-ethyl and metribuzin were the most injurious herbicides to radish and cereal rye shortly after application, respectively, but minimal injury was observed from soil samples collected 50 DAT indicating the use of PRE and fall seeded cover crops in southern Wisconsin can be compatible. These results can support growers and practitioners with selection of effective PRE herbicides for Palmer amaranth and giant foxtail control and reduced impact on fall seeded radish and cereal rye cover crops altogether leading to more effective, diverse and sustainable weed management programs.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Dawit Mulugeta ◽  
David E. Stoltenberg

Peak germination and emergence of common lambsquarters usually occur in early to mid-spring, but both processes can occur during summer and fall. Seeds produced by different common lambsquarters cohorts (seedlings that emerge at nearly the same time) may vary in dormancy status, response to environmental conditions, and response to management factors. Therefore, experiments were conducted to determine the influence of different cohorts on common lambsquarters demography. Field experiments determined plant density, biomass, and seed production of different common lambsquarters cohorts within a crop-free community of annual weed species that included redroot pigweed, giant foxtail, and velvetleaf. Common lambsquarters plant density and aboveground biomass were greater for a mid-May cohort than for early June, late June, mid-July, or early August cohorts, but seed production of the mid-May and early June cohorts did not differ (about 192,000 seeds m−2) and was greater than that of other cohorts (111,500 seeds m−2or less). In the laboratory, percent germination prior to stratification (exposure of seeds to low temperatures) was less for seeds harvested from early May and late May cohorts (≥ 9%) than those of mid-June or early July cohorts (≤ 75%). After stratification in the field, percent emergence (seedlings per number of planted seeds) and mean emergence time were similar among early May, late May, mid-June, and early July cohort seed sources, and were not influenced by shallow burial in soil. These results suggest that recruitment from seeds produced by different common lambsquarters cohorts is similar, but proportional to the number of seeds produced by each cohort.


2006 ◽  
Vol 20 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Cory M. Whaley ◽  
Gregory R. Armel ◽  
Henry P. Wilson ◽  
Thomas E. Hines

Field experiments were conducted in 2002 and 2003 to evaluate total POST weed control in corn with mixtures of mesotrione, atrazine, and the commercial mixture of nicosulfuron plus rimsulfuron plus atrazine at registered and reduced rates. Treatments were compared with nicosulfuron plus rimsulfuron plus atrazine POST, andS-metolachlor plus atrazine PRE alone and followed by (fb) nicosulfuron plus rimsulfuron plus atrazine POST. All treatments controlled common lambsquarters 8 wk after the postemergence treatments (WAPT). Common ragweed control with POST mesotrione plus nicosulfuron plus rimsulfuron plus atrazine combinations was greater than 89%. Mesotrione plus the registered rate of nicosulfuron plus rimsulfuron plus atrazine POST controlled common ragweed more effectively than the PRE treatment alone. Addition of atrazine to mesotrione improved common ragweed control by at least 38 percentage points over mesotrione alone. Nicosulfuron plus rimsulfuron plus atrazine at the registered rate and in mixtures with mesotrione controlled morningglory species (pitted and ivyleaf morningglory) 89 to 91%. Large crabgrass control varied between 2002 and 2003. In 2002, large crabgrass control was 58 to 76% with all POST treatments, but in 2003, nicosulfuron plus rimsulfuron plus atrazine POST alone controlled large crabgrass greater than 86%. Large crabgrass was more effectively controlled by treatments withS-metolachlor plus atrazine PRE than by the total POST treatments in 2002. Giant foxtail was controlled at least 97% with nicosulfuron plus rimsulfuron plus atrazine treatments.S-metolachlor plus atrazine PRE fb nicosulfuron plus rimsulfuron plus atrazine POST controlled all weed species greater than 85%. Corn yields by total POST treatment combinations of mesotrione plus either rate of nicosulfuron plus rimsulfuron plus atrazine were comparable toS-metolachlor plus atrazine PRE alone or fb nicosulfuron plus rimsulfuron plus atrazine POST.


Weed Science ◽  
2020 ◽  
pp. 1-14
Author(s):  
Xiangying Liu ◽  
Austin Merchant ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Xuguo Zhou ◽  
...  

Abstract Since its initial introduction in the late 1950s, chemical control has dominated weed management practices in China. Not surprisingly, the development of herbicide resistance has become the biggest threat to long-term, sustainable weed management in China. Given that China has followed the same laissez-faire approach toward resistance management that has been practiced in developed countries such as the United States, herbicide resistance has evolved rapidly and increased steadily over the years. Previously, we carried out a systematic review to quantitatively assess herbicide-resistance issues in China. In this review, our main objective is to focus on mechanistic studies and management practices to document the (1) history of herbicide application in China; (2) resistance mechanisms governing the eight most resistance-prone herbicide groups, including acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, synthetic auxin herbicides, 5-enolpyruvylshikimate-3-phosphate synthase inhibitors, protoporphyrinogen oxidase inhibitors, photosystem I electron diverters, photosystem II inhibitors, and long-chain fatty-acid inhibitors; and (3) herbicide-resistance management strategies commonly used in China, including chemical, cultural, biological, physical, and integrated approaches. At the end, perspectives and future research are discussed to address the pressing need for the development of integrated herbicide-resistance management in China.


Sign in / Sign up

Export Citation Format

Share Document