Low Inbreeding Depression and High Plasticity under Abiotic Stress in the Tall Morningglory (Ipomoea purpurea)

Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 864-876 ◽  
Author(s):  
Chase M. Mason ◽  
Dorothy A. Christopher ◽  
Ashley M. Rea ◽  
Lauren A. Eserman ◽  
Alex J. Pilote ◽  
...  

Weeds represent a major cause of agricultural losses worldwide. Most weeds share a common set of life history characteristics that predispose them to weediness, two of which are self-compatibility, which allows for ease of colonization through reproductive assurance, and high trait plasticity, which allows for tolerance of a wide variety of environments and abiotic conditions. However, self-fertilization typically comes at the cost of inbreeding depression. This study investigates the role of inbreeding depression and trait plasticity under abiotic stress in the tall morningglory, a widespread self-compatible agricultural weed in the southeastern United States. Results show very little inbreeding depression in this species, likely due to purging of deleterious alleles through repeated founder events in agricultural landscapes. In contrast, abiotic stress induced substantial plasticity in ecophysiological traits, reproductive traits, and biomass allocation. In terms of performance, drought sharply impacted reproduction but not vegetative growth, and nitrogen limitation sharply impacted both. These findings are applicable to the control of weedy morningglory and underscore the usefulness of evolutionary ecology to weed management.

Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1191-1202 ◽  
Author(s):  
Michael C Whitlock

Abstract The subdivision of a species into local populations causes its response to selection to change, even if selection is uniform across space. Population structure increases the frequency of homozygotes and therefore makes selection on homozygous effects more effective. However, population subdivision can increase the probability of competition among relatives, which may reduce the efficacy of selection. As a result, the response to selection can be either increased or decreased in a subdivided population relative to an undivided one, depending on the dominance coefficient FST and whether selection is hard or soft. Realistic levels of population structure tend to reduce the mean frequency of deleterious alleles. The mutation load tends to be decreased in a subdivided population for recessive alleles, as does the expected inbreeding depression. The magnitude of the effects of population subdivision tends to be greatest in species with hard selection rather than soft selection. Population structure can play an important role in determining the mean fitness of populations at equilibrium between mutation and selection.


2020 ◽  
Author(s):  
Jeena Mary

World is now facing a greater menace of climate change and this has a long term impact on agriculture system. Weeds are one of the major factors that hold back the crops from attaining potential yield. The changing climate can have an effect on weed diversity, establishment and management. The response of weeds to altering climate mainly leans on the physiological characteristics of the weed and how productively it can respond to the immediate climatic condition. Due to high plasticity of weeds, management of these unwanted plants become difficult. This has significant repercussions on weed control practices, especially herbicide performance and effectiveness. Therefore, an integrated approach of weed management is adopted to reduce the impact of climate change on crop-weed interaction. 


2020 ◽  
Author(s):  
Reto Schmucki ◽  
David A. Bohan ◽  
Michael J.O. Pocock

AbstractWeed management is a resource-intensive practice in arable agriculture, with direct and long-term impacts on both productivity and biodiversity (e.g. plant, pollinators and farmland wildlife). In conventional systems, weed control relies on crop management and herbicide inputs, but for more sustainable production systems, use of herbicides needs to be reduced. This requires a good understanding of the processes that regulate arable weed dynamics in arable fields.We adopted a systems framework to understand and model interacting components that drive the weed dynamics in 168 arable fields. Within this framework, we built a structural equation model (SEM) to quantify the direct and indirect effects of crop rotation (i.e. crops in the previous three years and the current year) and carabid beetles (Coleoptera: Carabidae) on weed density, seed abundance and accumulation in the seedbank. We included results from a mechanistic approach to infer interactions between seed-feeding carabid beetles and seeds to estimate predation pressure in each field.Our results show that weeds in arable fields are regulated by crop type, sowing season, and activity density of carabid beetles. We found a direct effect of crop rotation, including both past and current field management practice, on weed abundance in the field and its seedbank. There was also an indirect effect of crops on weed seed accumulation in the seedbank via the effect of seed-eating carabid beetles. The efficiency of weed control by carabid beetles depended on the cumulative predation pressure, which indicates the importance of functional diversity as well as abundance.Farmers and agronomists can capitalise on the ecosystem services provided by carabid beetles by adapting agronomic practices and crop rotation to maintain a rich fauna of seed-eating carabids in fields and potentially across the agricultural landscapes. When integrated with rotational management practices, this ecosystem services can improve the efficiency of weed management and contribute to the sustainability of cropping systems.


2019 ◽  
Author(s):  
Paula E. Adams ◽  
Anna L. Crist ◽  
Ellen M. Young ◽  
John H. Willis ◽  
Patrick C. Phillips ◽  
...  

AbstractThe deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Viruses, bacteria, and the selfing nematode Caenorhabditis elegans have been shown to be capable of rapid recovery from the fixation of novel deleterious mutation, however the potential for fitness recovery from fixation of segregating variation under inbreeding in outcrossing organisms is poorly understood. C. remanei is an outcrossing relative of C. elegans with high polymorphic variation and extreme inbreeding depression. Here we sought to characterize changes C. remanei in patterns of genomic diversity after ∼30 generations of inbreeding via brother-sister mating followed by several hundred generations of recovery at large population size. As expected, inbreeding led to a large decline in reproductive fitness, but unlike results from mutation accumulation experiments, recovery from inbreeding at large populations sizes generated only very moderate recovery in fitness after 300 generations. At the genomic level, we found that while 66% of ancestral segregating SNPs were fixed in the inbred population, this was far fewer than expected under neutral processes. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous and reproductive systems changed reproducibly across all replicates, indicating that strong selection for fitness recovery does exist but is likely mutationally limited due to the large number of potential targets. Our results indicate that recovery from inbreeding depression via new compensatory mutations is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for rapid evolutionary rescue of small populations.Impact SummaryInbreeding is defined as mating between close relatives and can have a large effect on the genetic diversity and fitness of populations. This has been recognized for over 100 years of study in evolutionary biology, but the specific genomic changes that accompany inbreeding and the loss of fitness are still not known. Evolutionary theory predicts that inbred populations lose fitness through the fixation of many deleterious alleles and it is not known if populations can recover fitness after prolonged periods of inbreeding and deleterious fixations, or how long recovery may take. These questions are particularly important for wild populations experiencing declines. In this study we use laboratory populations of the nematode worm Caenorhabditis remanei to analyze the loss of fitness and genomic changes that accompany inbreeding via brother-sister mating, and to track the populations as they recover from inbreeding at large population size over 300 generations. We find that: Total progeny decreased by 65% after inbreedingThere were many nucleotides in the genome that remained heterozygous after inbreedingThere was an excess of inbreeding-resistant nucleotides on the X chromosomeThe number of progeny remained low after 300 generations of recovery from inbreeding30 genes changed significant in allele frequency during recovery, including genes involved in the alimentary, muscular, nervous and reproductive systemsTogether, our results demonstrate that recovery from inbreeding is difficult, likely due to the fixation of numerous deleterious alleles throughout the genome.


2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Aurilene Santos Oliveira ◽  
Edésio Fialho dos Reis ◽  
Ana Paula Oliveira Nogueira ◽  
Fernando Cezar Juliatti

The effect known as depression by inbreeding refers to the reduction on the average value of quantitative traits, related to plant reproduction and physiology, due to the homozygosis of deleterious alleles.  This study evaluated the inbreeding depression and the genetic variability of agricultural traits and of the resistance to phytopathogens in inbred families of two exotic maize populations.  The experiments were done in the experimental area of the Universidade Federal de Goiás, Regional Jataí, in the second harvest 2015.  Fifty and 40 FS1 of NAP5 and NAP7 populations, respectively, were evaluated interplanting one row with a mixture of base population at every ten plots to estimate depression by inbreeding of the traits evaluated.  The experimental design was randomized blocks, with three replications.  The following traits were evaluated: AP – plant height (cm), AE – ear height (cm), FM – male flowering (days), PQ – number of broken plants, AC – number of lodged plants, PG – kernel production (kg plot-1).  The greatest estimates of depression by inbreeding in the agricultural traits were observed for kernel production, with values of 51.2 and 38.9% for the populations NAP5 and NAP7, respectively.  Among the traits of resistance to phytopathogens, the greatest estimate was observed for the stunting complex, with values of -58.9% in NAP5 and -74.2% in NAP7.  Both populations under study presented genetic potential to be used in breeding programs with recurrent selection and, after some selection cycles, lineages with good agricultural standard and resistance to phytopathogens can be obtained.


2019 ◽  
Author(s):  
Himani Sachdeva

AbstractThis paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation-selection balance in a large, partially selfing source population under selection involving multiple non-identical loci. I then use individual-based simulations to study the eco-evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long-term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed.


2021 ◽  
Vol 42 (4) ◽  
pp. 2523-2538
Author(s):  
Sindy Liliana Caivio-Nasner ◽  
◽  
Albeiro López-Herrera ◽  
Luis Gabriel González-Herrera ◽  
Juan Carlos Rincón Flórez ◽  
...  

The Colombian creole cattle breed Blanco Orejinegro (BON) is an important zoogenetic resource, but there is little knowledge about the genetic parameters and trends of its reproductive traits. Therefore, the aim of this study was to estimate parameters for the reproductive traits calving interval (CI), age at first calving (AFC), gestation duration (GD) and genetic trends for CI in the BON breed. Genealogy information from 7,799 animals was used, and employing the MTDFREML program, the components of the variance, heritability (h2), repeatability (rep), and estimated breeding values (EBV) for CI (n=3308), AFC (n=729), and GD (n=306) were estimated, in addition to the inbreeding coefficient (F) of the population. Genetic trends were established through linear regression using R software. Finally, the animals were classified as inbred (F > 0) and noninbred (F=0), and the effect of inbreeding on reproductive performance was established through a generalized linear model using the R program. An average F value of 4.41%±0.06 was observed. The h2 for CI was 0.11±0.03 with a rep of 0.15±0.04; for AFC, h2 was 0.00±0.05; and for GD, h2 was 0.00±0.08. The genetic trend for CI was -0.01 days/year. Finally, for CI, inbreeding depression was evident; this trait increased when inbreeding increased. These results indicate an important environmental influence on reproductive traits. The heritability estimate for CI suggests that little genetic progress could be achieved through selection. The evidence of inbreeding depression raises the need to control inbreeding to conserve this genetic resource.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 337-348 ◽  
Author(s):  
David L Remington ◽  
David M O'Malley

AbstractInbreeding depression is important in the evolution of plant populations and mating systems. Previous studies have suggested that early-acting inbreeding depression in plants is primarily due to lethal alleles and possibly epistatic interactions. Recent advances in molecular markers now make genetic mapping a powerful tool to study the genetic architecture of inbreeding depression. We describe a genome-wide evaluation of embryonic viability loci in a selfed family of loblolly pine (Pinus taeda L.), using data from AFLP markers from an essentially complete genome map. Locus positions and effects were estimated from segregation ratios using a maximum-likelihood interval mapping procedure. We identified 19 loci showing moderately deleterious to lethal embryonic effects. These loci account for >13 lethal equivalents, greater than the average of 8.5 lethal equivalents reported for loblolly pine. Viability alleles show predominantly recessive action, although potential overdominance occurs at 3 loci. We found no evidence for epistasis in the distribution of pairwise marker correlations or in the regression of fitness on the number of markers linked to deleterious alleles. The predominant role of semilethal alleles in embryonic inbreeding depression has implications for the evolution of isolated populations and for genetic conservation and breeding programs in conifers.


2021 ◽  
Author(s):  
M.A. Stoffel ◽  
S.E. Johnston ◽  
J.G. Pilkington ◽  
J.M Pemberton

AbstractRuns of homozygosity (ROH) are pervasive in diploid genomes and expose the effects of deleterious recessive mutations, but how exactly these regions contribute to variation in fitness remains unclear. Here, we combined empirical analyses and simulations to explore the deleterious effects of ROH with varying genetic map lengths in wild Soay sheep. Using a long-term dataset of 4,592 individuals genotyped at 417K SNPs, we found that inbreeding depression increases with ROH length. A 1% genomic increase in long ROH (>12.5cM) reduced the odds of first-year survival by 12%, compared to only 7% for medium ROH (1.56-12.5cM), while short ROH (<1.56cM) had no effect on survival. We show by forward genetic simulations that this is predicted: compared with shorter ROH, long ROH will have higher densities of deleterious alleles, with larger average effects on fitness and lower population frequencies. Taken together, our results are consistent with the idea that the mutation load decreases in older haplotypes underlying shorter ROH, where purifying selection has had more time to purge deleterious mutations. Finally, our study demonstrates that strong inbreeding depression can persist despite ongoing purging in a historically small population.


Sign in / Sign up

Export Citation Format

Share Document