scholarly journals Independent Evolution of Acetolactate Synthase–inhibiting Herbicide Resistance in WeedySorghumPopulations across Common Geographic Regions

Weed Science ◽  
2017 ◽  
Vol 65 (1) ◽  
pp. 164-176 ◽  
Author(s):  
Rodrigo Werle ◽  
Kevin Begcy ◽  
Melinda K. Yerka ◽  
Jeffrey P. Mower ◽  
Ismail Dweikat ◽  
...  

Traditional breeding has been used to develop grain sorghum germplasm that is tolerant to acetolactate synthase (ALS)-inhibiting herbicides (Inzen Technology, DuPont). Inzen sorghum carries a double mutation in the ALS gene (Val560Ile and Trp574Leu), which confers high level of tolerance to ALS-inhibiting herbicides. Overreliance on ALS-inhibiting herbicides for weed control during the 1990s resulted in the evolution of ALS inhibitor–resistant shattercane populations in Nebraska. According to a survey conducted in 2013, ALS inhibitor–resistant weedySorghumpopulations persist in Nebraska. The objectives of this research were to determine whether the ALS mutations present in Inzen sorghum were present in the ALS inhibitor–resistant shattercane and johnsongrass populations detected in Nebraska and northern Kansas, and whether these populations evolved ALS resistance independently. Primers specific to the Val560and Trp574region of the ALS gene were used to screen the populations with PCR. The Trp574Leu mutation was present in one ALS inhibitor–resistant johnsongrass population. The Val560Ile was detected in three ALS inhibitor–resistant shattercane, one susceptible shattercane, one ALS inhibitor–resistant johnsongrass, and one susceptible johnsongrass population. Moreover, Val560Ile was present in resistant and/or susceptible individuals within johnsongrass and shattercane populations that were segregating for ALS resistance, indicating that by itself the Val560Ile mutation does not confer resistance to ALS-inhibiting herbicides. None of the populations presented both mutations simultaneously, as does Inzen sorghum. A shattercane population containing the Ser653Thr mutation was also detected. This research indicates that the ALS mutations present in Inzen sorghum already exist individually in weedy sorghum populations. Moreover, our results present strong evidence that ALS resistance in these populations evolved independently. Thus, widespread overreliance on ALS-inhibiting herbicides prior to adoption of glyphosate-tolerant crops in the 1990s exerted sufficient selective pressure on shattercane and johnsongrass populations for resistance to evolve multiple times in the Midwest. Finally, a survey of the 5′ portion of the ALS gene in more diverse wild and weedySorghumspecies was hampered by limited coverage in genomic resequencing surveys, suggesting that refined PCR-based methods will be needed to assess SNP variation in this gene region, which includes the Ala122, Pro197, and Ala205codons known to confer ALS resistance in other species.

Weed Science ◽  
2021 ◽  
pp. 1-25
Author(s):  
Qian Yang ◽  
Xia Yang ◽  
Zichang Zhang ◽  
Jieping Wang ◽  
Weiguo Fu ◽  
...  

Abstract Barnyardgrass (Echinochloa crus-galli) is a noxious grass weed which infests rice fields and causes huge crop yield losses. In this study, we collected twelve E. crus-galli populations from rice fields of Ningxia province in China and investigated the resistance levels to acetolactate synthase (ALS) inhibitor penoxsulam and acetyl-CoA carboxylase (ACCase) inhibitor cyhalofop-butyl. The results showed that eight populations exhibited resistance to penoxsulam and four populations evolved resistance to cyhalofop-butyl. Moreover, all of the four cyhalofop-butyl-resistant populations (NX3, NX4, NX6 and NX7) displayed multiple-herbicide-resistance (MHR) to both penoxsulam and cyhalofop-butyl. The alternative herbicides bispyribac-sodium, metamifop and fenoxaprop-P-ethyl cannot effectively control the MHR plants. To characterize the molecular mechanisms of resistance, we amplified and sequenced the target-site encoding genes in resistant and susceptible populations. Partial sequences of three ALS genes and six ACCase genes were examined. A Trp-574-Leu mutation was detected in EcALS1 and EcALS3 in two high-level (65.84- and 59.30-fold) penoxsulam-resistant populations NX2 and NX10, respectively. In addition, one copy (EcACC4) of ACCase genes encodes a truncated aberrant protein due to a frameshift mutation in E. crus-galli populations. None of amino acid substitutions that are known to confer herbicide resistance were detected in ALS and ACCase genes of MHR populations. Our study reveals the widespread of multiple-herbicide resistant E. crus-galli populations at Ningxia province of China that exhibit resistance to several ALS and ACCase inhibitors. Non-target-site based mechanisms are likely to be involved in E. crus-galli resistance to the herbicides, at least in four MHR populations.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1496
Author(s):  
Balaji Aravindhan Pandian ◽  
Abigail Friesen ◽  
Martin Laforest ◽  
Dallas E. Peterson ◽  
P. V. Vara Prasad ◽  
...  

Wild buckwheat (Polygonum convolvulus L.) is a problem weed and ALS-inhibitors (e.g., chlorsulfuron) are commonly used for its management. Recently, a population of wild buckwheat (KSW-R) uncontrolled with ALS-inhibitors was found in a wheat field in Kansas, USA. The objectives of this research were to determine the level and mechanism of resistance to chlorsulfuron and cross resistance to other ALS-inhibitors in the KSW-R population. In response to chlorsulfuron rates ranging from 0 to 16x (x = 18 g ai/ha), the KSW-R wild buckwheat was found >100-fold more resistant compared to a known ALS-inhibitor susceptible (KSW-S) wild buckwheat. Also, >90% of KSW-R plants survived field recommended rates of sulfonylurea but not imidazolinone family of ALS-inhibitors. A portion of the ALS gene covering all previously reported mutations known to bestow resistance to ALS-inhibitors was sequenced from both KSW-R and KSW-S plants. The Pro-197-Ser substitution that confers resistance to the sulfonylurea herbicides was found in KSW-R plants. Our results support the evolution of high level of chlorsulfuron resistance as a result of a mutation in the ALS-gene in KSW-R buckwheat. This is the first case of resistance to any herbicides in wild buckwheat in the US.


1995 ◽  
Vol 35 (1) ◽  
pp. 67 ◽  
Author(s):  
GS Gill

Annual ryegrass (Lolium rigidum) samples from the cropping belt of Western Australia were screened for herbicide resistance in 1992 and 1993. There was a strong relationship between the number of applications of a herbicide group and development of resistance in ryegrass populations. Resistance was detected in all populations that received >7 applications of aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides or >4 applications of sulfonylurea (SU) herbicides. Some AOPP-resistant populations had also developed crossresistance to SU herbicides, a group with a different mode of action. Inclusion of pasture in the rotation had little effect on the relationship between the number of applications of the AOPP and SU herbicides and development of resistance. A subset of 33 populations was chosen to determine the response of triasulfuron-resistant populations to sulfometuron, a nonselective SU herbicide which has been shown to be effective against metabolic-type resistance. All triasulfuron-resistant populations were found to be resistant to sulfometuron, possibly due to insensitive acetolactate synthase (ALS) in these ryegrass populations. Some of these SU-resistant populations were also resistant to the imidazolinone herbicide imazethapyr, another ALS inhibitor. However, there were several populations with a high level of SU resistance that were still susceptible to imazethapyr.


2012 ◽  
Vol 26 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Hugh J. Beckie ◽  
Suzanne I. Warwick ◽  
Connie A. Sauder

Wild buckwheat is the most abundant broadleaf weed across the Prairie region of western Canada. Acetolactate synthase (ALS)-inhibiting herbicides are commonly used to control this species and other broadleaf weeds in cereal crops. A field survey in Alberta in 2007 identified a single population that was putatively resistant to ALS-inhibiting herbicides. In herbicide resistance screening in the greenhouse, all F1 progeny tested were resistant to the ALS-inhibiting herbicides thifensulfuron/tribenuron, a sulfonylurea herbicide, or florasulam, a triazolopyrimidine herbicide; dose response of shoot biomass indicated the population was 10- and 20-fold less sensitive to thifensulfuron/tribenuron and florasulam, respectively, than a susceptible control population. ALS gene sequencing of 24 F1 progeny indicated that the Trp574Leu target-site mutation was responsible for conferring ALS-inhibitor resistance in this biotype, the first global report of ALS-inhibitor resistance for this species. Because this mutation typically endows high-level resistance across all five ALS-inhibitor classes, this wild buckwheat biotype may only be controlled by a different site-of-action herbicide.


Author(s):  
Alysha T Torbiak ◽  
Robert Blackshaw ◽  
Randall N Brandt ◽  
Bill Hamman ◽  
Charles M. Geddes

Kochia [Bassia scoparia (L.) A.J. Scott] is an invasive C4 tumbleweed in the Great Plains of North America, where it impedes crop harvest and causes significant crop yield losses. Rapid evolution and spread of glyphosate- and acetolactate synthase (ALS) inhibitor-resistant kochia in western Canada limit the herbicide options available for control of these biotypes in field pea (Pisum sativum L.); one of the predominant pulse crops grown in this region. Field experiments were conducted near Lethbridge, Alberta in 2013-2015 and Coalhurst, Alberta in 2013-2014 to determine which herbicide options effectively control glyphosate- and ALS inhibitor-resistant kochia in field pea. Visible injury of field pea was minor (0-4%) in all environments except for Lethbridge 2013, where pre-plant (PP) flumioxazin and all treatments containing post-emergence (POST) imazamox/bentazon resulted in unacceptable (14-23%) pea visible injury. Herbicide impacts on pea yield were minor overall. Carfentrazone + sulfentrazone PP and saflufenacil PP followed by imazamox/bentazon POST resulted in ≥80% visible control of kochia in all environments, while POST imazamox/bentazon alone resulted in ≥80% reduction in kochia biomass in all environments compared with the untreated control (albeit absent of statistical difference in Coalhurst 2014). These results suggest that layering the protoporhyrinogen oxidase-inhibiting herbicides saflufenacil or carfentrazone + sulfentrazone PP with the ALS- and photosystem II-inhibiting herbicide combination imazamox/bentazon POST can effectively control glyphosate- and ALS inhibitor-resistant kochia in field pea while also mitigating further selection for herbicide resistance through the use of multiple effective herbicide modes-of-action.


1992 ◽  
Vol 101 (4) ◽  
pp. 795-799
Author(s):  
C. Saulnier-Michel ◽  
M. Fromont-Racine ◽  
R. Pictet

RW cells are pancreatic endocrine RIN cells that have been stably transfected with a chimeric gene that places the expression of the dominant selection gpt gene under the control of the insulin gene regulatory sequences. These RW cells were examined for hormone content using immunocytochemistry. This analysis shows that: first, there are cells that are negative for insulin although they were cultured under selective pressure. Second, there is a higher proportion of somatostatin-producing cells than in the parental RIN cells; these somatostatin cells form two populations: one of cells containing only somatostatin and, surprisingly, one made of cells containing both insulin and somatostatin. Thus: (1) expression of the transfected and endogenous insulin regulatory sequences is not regulated in a coordinate fashion; (2) the presence of both hormones in the same cell suggests that the regulation of the expression of insulin and somatostatin genes and the differentiation pathway of the two respective cell types may be closely related.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Terry R. Wright ◽  
Donald Penner

Acetolactate synthase (ALS)-inhibiting herbicide carryover in soil can severely affect sugarbeets grown in the year(s) following application. Two newly developed imidazolinone-resistant (IMI-R) sugarbeet somatic cell selections (Sir-13 and 93R30B) were examined for magnitude of resistance and extent of cross-resistance to other classes of ALS inhibitors and compared to a previously developed sulfonylurea-resistant (SU-R) selection, Sur. In vitro shoot culture tests indicated Sir-13 resistance was specific to imidazolinone (IMI) herbicides at approximately a 100-fold resistance compared to the sensitive control sugarbeet. Sur was 10,000-fold resistant to the sulfonylurea (SU) herbicide, chlorsulfuron, and 40-fold resistant to the triazolopyrimidine sulfonanilide (TP) herbicide, flumetsulam, but not cross-resistant to the IMI herbicides. 93R30B was selected for IMI-R from a plant homozygous for the SU-R allele,Sur, and displayed similar in vitro SU-R and TP-R as Sur, but also displayed a very high resistance to various IMI herbicides (400- to 3,600-fold). Compared to the sensitive control, Sir-13 was 300- and > 250-fold more resistant to imazethapyr and imazamox residues in soil, respectively. Response by whole plants to postemergence herbicide applications was similar to that observed in shoot cultures. Sir-13 exhibited > 100-fold resistance to imazethapyr as well as imazamox, and 93R30B showed > 250-fold resistance to both herbicides. 93R30B showed great enough resistance to imazamox to merit consideration of imazamox for use as a herbicide in these sugarbeets. Sir-13 showed a two- to threefold higher level of resistance in the homozygous vs. heterozygous state, indicating that like most ALS-inhibitor resistance traits, it was semidominantly inherited.


1996 ◽  
Vol 40 (11) ◽  
pp. 2488-2493 ◽  
Author(s):  
P Mugnier ◽  
P Dubrous ◽  
I Casin ◽  
G Arlet ◽  
E Collatz

A clinical strain of Pseudomonas aeruginosa, PAe1100, was found to be resistant to all antipseudomonal beta-lactam antibiotics and to aminoglycosides, including gentamicin, amikacin, and isepamicin. PAe1100 produced two beta-lactamases, TEM-2 (pI 5.6) and a novel, TEM-derived extended-spectrum beta-lactamase called TEM-42 (pI 5.8), susceptible to inhibition by clavulanate, sulbactam, and tazobactam. Both enzymes, as well as the aminoglycoside resistance which resulted from AAC(3)-IIa and AAC(6')-I production, were encoded by an 18-kb nonconjugative plasmid, pLRM1, that could be transferred to Escherichia coli by transformation. The gene coding for TEM-42 had four mutations that led to as many amino acid substitutions with respect to TEM-2: Val for Ala at position 42 (Ala42), Ser for Gly238, Lys for Glu240, and Met for Thr265 (Ambler numbering). The double mutation Ser for Gly238 and Lys for Glu240, which has so far only been described in SHV-type but not TEM-type enzymes, conferred concomitant high-level resistance to cefotaxime and ceftazidime. The novel, TEM-derived extended-spectrum beta-lactamase appears to be the first of its class to be described in P. aeruginosa.


2007 ◽  
Vol 21 (4) ◽  
pp. 863-868 ◽  
Author(s):  
Nilda R. Burgos ◽  
Lynn P. Brandenberger ◽  
Erin N. Stiers ◽  
Vinod K. Shivrain ◽  
Dennis R. Motes ◽  
...  

Chemical options for weed control in commercial cowpea production are limited. Repeated long-term use of the acetolactate synthase (ALS) inhibitor, imazethapyr, has resulted in selection for ALS-resistant populations of Palmer amaranth. Experiments were conducted at Bixby, OK, and Kibler, AR, from 2001 to 2003 to evaluate the tolerance of cowpea cultivars and advanced breeding lines to fomesafen, a potential alternative for controlling ALS-resistant Palmer amaranth and other problematic broadleaf weeds. Eight commercial cultivars and 42 advanced breeding lines were entered in the preliminary screening, using 0.84 kg/ha fomesafen. Six breeding lines were selected for the first replicated trial and three (00-582, 00-584, and 00-609) were advanced to across-location experiments. Fomesafen doses of 0, 0.17, 0.34, and 0.67 kg/ha were tested across locations. ‘Early Scarlet’ was used as commercial standard. The advanced lines had equal or higher yield potential (1,182 to 1,936 kg/ha) than Early Scarlet (1,108 kg/ha) across locations. Of the cultivars tested, line 00-609 was the best yielder, whereas 00-584 had the highest tolerance to fomesafen. At the commercial fomesafen rate of 0.34 kg/ha, 00-584 had higher yield (974 and 1,735 kg/ha, respectively, at Bixby, OK, and Kibler, AR) than the nontreated, weed-free, Early Scarlet. Thus, fomesafen can be used on the tolerant line, 00-584, without reducing yield potential relative to Early Scarlet.


Sign in / Sign up

Export Citation Format

Share Document