Integration of Oxyfluorfen into Strawberry (Fragaria×ananassa) Weed Management Programs

2008 ◽  
Vol 22 (4) ◽  
pp. 685-690 ◽  
Author(s):  
Oleg Daugovish ◽  
Steven A. Fennimore ◽  
Maren J. Mochizuki

Field trials were conducted at three California locations near Oxnard, Salinas, and Watsonville from 2002 to 2006 to evaluate broadleaf weed control and tolerance of strawberry to oxyfluorfen. Oxyfluorfen applied at 0.3 and 0.6 kg/ha before strawberry transplanting reduced densities of broadleaf weeds such as California burclover, hairy nightshade, little mallow, shepherd's-purse, and yellow sweetclover 70 to 100% compared with nontreated plots but did not control horseweed. Oxyfluorfen application resulted in 9% and 19% greater visible injury to strawberry for the two rates, respectively, compared with nontreated plants in 1 yr but did not reduce strawberry yield. After oxyfluorfen application at 0.6 kg/ha, strawberry plants had 5 to 48% more injury than nontreated plants in subsequent years but early-season yields were similar. Hand-weeding time was reduced 30 to 50% compared with nontreated plots regardless of oxyfluorfen rate. Both water-based and solvent-carrier formulations of oxyfluorfen resulted in similar weed control, strawberry injury, and fruit yield. Plastic mulch installation after oxyfluorfen application but before planting reduced injury to strawberry more than 50% compared with nonmulched beds. Oxyfluorfen applied 30 d before strawberry transplanting had similar crop injury and yield to applications made 15 and 7 d before planting. These results suggest that oxyfluorfen can be used safely in California plasticulture strawberry production for control of common weed species and to reduce labor inputs associated with hand weeding.

2013 ◽  
Vol 7 (1) ◽  
pp. 31-38
Author(s):  
N. Soltani ◽  
R.E. Nurse ◽  
C. L. Gillard ◽  
P.H. Sikkema

Twelve field trials were conducted over a three-year period (2010, 2011, 2012) at different locations in southwestern Ontario, Canada to compare various two-pass weed management strategies in glyphosate-resistant corn for crop injury, weed control, environmental impact, corn yield and profit margin. No visible injury resulted from the herbicide treatments evaluated. One early postemergence (EPOST) application of glyphosate provided good full season control of pigweed species and lady's thumb and fair control of velvetleaf, common ragweed, lamb's-quarters, barnyard grass and green foxtail. One late postemergence (LPOST) application of glyphosate provided excellent control of all weed species evaluated but corn yield was reduced due to early weed interference. The sequential application of glyphosate (EPOST fb LPOST) provided excellent control of all weed species evaluated with no adverse effect on corn yield. The sequential application of a preemergence residual herbicide followed by an application of glyphosate LPOST provided excellent full season control of all weed species evaluated and corn yield was equal to the weed free control. Among the sequential herbicide programs the lowest environmental impact was glyphosate EPOST fb LPOST and saflufenacil/dimethenamid-p, isoxaflutole + atrazine or rimsulfuron + s-metolachlor + dicamba applied PRE fb glyphosate LPOST. Based on this study, the most efficacious and profitable weed management programs in glyphosate-resistant corn are a sequential application of glyphosate or a two-pass program of a preemergence residual herbicide followed by glyphosate LPOST. The two-pass programs have glyphosate stewardship benefits.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


2020 ◽  
Author(s):  
Akashdeep Singh ◽  
S. S. Rana ◽  
Anju Bala

Chickpea (Cicer arietinum) is one of the most important pulse crops but it’s productivity in India is quite low. There are various reasons for low productivity. Weed control is the basic requirement and the major component of crop management. Weeds on an average reduce the crop yield by 40-87 per cent. Deciding time to control weeds requires detailed knowledge of the weed populations in the field. Different management practices like altering spacing, competitive cultivars, etc. can help in enhancing the productivity. With the world entering the precision-farming era, more emphasis is being put on the use of post-emergence herbicides. Application of two or more herbicide at the same time or as a double knockdown and integrating with hand-weeding provides desirable control of different weed species besides reducing the hazard of chemical weed control.


2005 ◽  
Vol 19 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Harlene M. Hatterman-Valenti

Few weed management options are available for juneberry, which has limited the potential for this new crop. Field trials were initiated at three locations in North Dakota to evaluate efficacy and crop safety associated with chemical and physical weed control treatments applied just before or immediately after transplanting. All treatments except norflurazon and trifluralin provided at least 85% control of redroot pigweed, common lambsquarters, common purslane, and yellow foxtail for the duration of the trial at Absaraka, ND, during 2001. Stinkgrass weed control 8 wk after treatment (WAT) dropped to unacceptable levels (<85%) with all treatments except azafenidin at 0.5 kg ai/ ha, norflurazon, and oxyfluorfen at 1.1 kg ai/ha at Dawson, ND, during 2001. However, juneberry injury 4 WAT by azafenidin at 0.5 kg/ha, flumioxazin at both locations, or azafenidin at 0.34 kg/ha and oxyfluorfen at 1.1 kg ai/ha at Absaraka, ND, was greater than observed for plants within the physical treatments. Juneberry injury generally decreased with time, yet remained >20% at 8 WAT for azafenidin and flumioxazin at Absaraka, ND, and for all treatments except the mulches at Dawson, ND. Plant injury 8 WAT at Absaraka in 2002 was 10% or less for all treatments and was lower compared with 2001. All physical treatments—azafenidin at 0.34 and 0.5 kg/ha, flumioxazin at 0.29 kg/ha, and oryzalin at 4.5 kg/ha—provided at least 85% control of all weed species at Carrington and Absaraka, ND, during 2002.


2018 ◽  
Vol 32 (3) ◽  
pp. 284-289
Author(s):  
H. Kaur ◽  
Navneet Kaur ◽  
R. I. S. Gill ◽  
Makhan S. Bhullar ◽  
A. Singh

AbstractCommon cottonwood-based agroforestry system is widely adopted in Indian Indo-Gangetic plains. The stem cuttings of common cottonwood are raised in a nursery 10 to 12 months in rows spaced 0.5 mx0.5 m, before re-planting in the field. The longer duration of 10 to 12 months and wider spacing of stem cuttings in the nursery makes the entire transplants highly vulnerable to weed competition, especially during early establishment stages. The efficacy of preemergence herbicides and plastic and straw mulches for weed management in common cottonwood nursery was investigated at two sites in years 2014 and 2015. The major weed flora in the experimental field consisted of three grass weeds (crowfootgrass, feather lovegrass, and southern crabgrass), and four broadleaf weeds (scarlet pimpernel, garden spurge, niruri, and lesser swinecress). The integrated use of pendimethalin or alachlor applied PRE with paddy straw mulch significantly reduced density and biomass of both grass and broadleaf weeds compared to herbicide or straw mulch used alone, and provided similar level of weed control to hand weeding at both locations. Spreading of plastic mulch in the whole field after punching holes for common cottonwood stem cuttings, or in row spaces recorded similar weed control to hand-weeding. The integrated use of herbicides with straw mulch, and or plastic mulch alone significantly improved plant height, stem diameter, below- and above-ground biomass of common cottonwood plants compared to unweeded check. The study concluded that integrated use of herbicides plus paddy straw mulch or plastic mulch alone could be adopted for weed management in common cottonwood nursery plantations.


2019 ◽  
Vol 29 (6) ◽  
pp. 866-873
Author(s):  
S. Christopher Marble ◽  
Shawn T. Steed ◽  
Debalina Saha ◽  
Yuvraj Khamare

Mulches have been evaluated extensively as a weed management tool in container plant production, but most research has focused on loose-fill wood-derived mulch materials, such as pine bark or wood chips. In this experiment, pine (mixed Pinus sp.) bark (PB), shredded hardwood (HW), and pine sawdust were evaluated for weed control and crop response both alone and in combination with a guar gum tackifier alongside a plastic film mulch, a paper slurry mulch, and the paper slurry mulch + PB and compared with a nonmulched, nontreated control and a single application of preemergence herbicide (oxyfluorfen + pendimethalin). Mulch materials were applied to nursery containers ranging from 7 to 25 gal at two different nurseries and at two research centers in central Florida in 2017 and 2018. Results showed that the plastic mulch provided more than a 90% reduction in hand weeding time and weed weight over a 6-month period, and similar control was achieved with PB, paper slurry + PB, and the HW treatment (64% to 91% reduction in weeding time and weed weight). No growth differences were observed with any mulch treatment in any species evaluated including ligustrum (Ligustrum japonicum), Chinese elm (Ulmus parvifolia), or podocarpus (Podocarpus macrophyllum).


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Bhupesh Kumar Mishra ◽  
Santosh Pandey

The different weed control methods (two hand weeding at 25 and 45 days after sowing (DAS) and one hand weeding at 25 DAS along with unweeded control ), organic sources of nitrogen (vermicompost, poultry manure, city manure and FYM) and their interaction were compared for their efficiency on various weed species and yield of wheat. Two hand weeding (W2) gave significantly maximum weed control. This was followed by one hand weeding at 25 DAS and control. These weed control methods significantly enhanced the yield and yield components of wheat. Among organic sources of nitrogen vermicompost (M1) recorded minimum weed density, weed dry weight and maximum yield, followed by poultry manure, city manure and FYM.


2014 ◽  
Vol 41 (2) ◽  
pp. 124-130 ◽  
Author(s):  
D. Q. Wann ◽  
R. S. Tubbs

ABSTRACT Previous research has shown that mechanical cultivation is the most effective and affordable method of weed control in organic peanut production. However, growers are in need of more information on specific integrated cultivation regimes for effective season-long weed control with minimal hand-weeding requirements. Therefore, field trials were conducted in 2010–2012 to evaluate the effects of various tine and sweep cultivation treatments combined with or without hand-weeding on season-long weed control, stand establishment, and yield and grade of an organically-managed peanut crop. Tine cultivation treatments consisted of no cultivation or weekly cultivations for 5 wks after planting (WAP). Sweep treatments consisted of no cultivation, weekly cultivations (for 5 WAP), cultivations at 2 and 5 WAP only, or cultivation at 5 WAP only. Hand-weeding treatments were no hand-weeding or hand-weeding of the entire plot. There were numerous significant interactions among tine and sweep treatments on weed control. Initial weed species composition greatly affected cultivation effects on overall weed control. Tine cultivation was most effective at controlling annual grass weeds. Sweep cultivation was effective at reducing weeds (Amaranthus spp., southern crabgrass, and Florida pusley), but primarily when tine cultivation was absent. Hand-weeding significantly improved weed control for every weed species every year. Additionally, inclusion of certain cultivation regimes significantly reduced the hand-weeding time requirement over the control. However, cultivation treatments did not improve pod yield or grade in any year. The most significant benefit in cultivation from these data is in the reduction in hand-weeding requirements. Based on this research, a regime consisting of weekly tine cultivations for 5 WAP, combined with two timely sweep cultivations provided the best overall balance of weed control and minimization of hand-weeding. Hand-weeding is the most critical weed control method, followed by tine cultivation, and finally sweep cultivation, which primarily served as an aid in the event of missed tine cultivations or failure.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 661e-661
Author(s):  
Kimberly B. Collins ◽  
Leslie A. Weston ◽  
Robert E. McNiel

The nursery industry currently has few options for effective season-long weed control, because few soil persistent herbicides are registered for use in ornamentals. An herbicide that provides season-long weed control with minimal injury to ornamentals would be extremely beneficial because it would enable the nurseryman to produce high-quality ornamentals with minimal weed interference Sulfentrazone (F6285), a newly developed herbicide from the FMC Corp., has shown promising results for weed control in field trials with ornamentals. Additional, trials are needed to further evaluate sulfentrazone in hopes that it may be registered for use in ornamentals in the future. Our objectives are 1) to increase long-term weed management in ornamentals, including woody species and groundcover; 2) to evaluate rate structures of sulfentrazone and combinations, including preemergence and postemergence herbicides; 3) to evaluate sulfentrazone selectivity in weed species and in ornamentals; 4) to evaluate sulfentrazone mode of action in weed species; and 5) to measure the soil activity of sulfentrazone. To achieve the first three objectives, a randomized complete block design will be used to evaluate 10 woody species and 17 herbicide combinations. The response variables will be weed control and phytotoxicity ratings taken at 0, 4, 8, and 12 weeks after treatment. The results of this study will be used in ongoing research trials in an attempt to register sulfentrazone (F6285) for use in ornamentals.


2011 ◽  
Vol 25 (4) ◽  
pp. 535-541 ◽  
Author(s):  
Christie L. Stewart ◽  
Robert E. Nurse ◽  
Laura L. Van Eerd ◽  
Richard J. Vyn ◽  
Peter H. Sikkema

With the number of glyphosate-resistant weed species increasing in North America and a lack of new herbicide chemistries being developed, growers are shifting toward using older herbicides that are more expensive and may be less environmentally friendly. Therefore, to determine which weed management strategies are most cost effective and have the lowest impact on the environment we evaluated the efficacy, environmental impact, and the profitability of several weed management strategies in glyphosate-resistant soybean over a 3-yr period (2007 to 2009) at three locations in southwestern Ontario, Canada. No visible injury to soybean was observed with the herbicide treatments evaluated. A sequential application of glyphosate consistently provided high levels of weed control (99 to 100%) at 56 d after treatment in comparison with one- or two-pass herbicide programs. Soybean yield did not differ between the two-pass herbicide programs and glyphosate applied early POST; however, a yield benefit was found with a sequential application of glyphosate or a PRE herbicide followed by glyphosate compared with glyphosate applied only at late POST. The two-pass herbicide programs had higher environmental impact (EI) (> 23) than the one-pass herbicide programs (< 15), except when imazethapyr was followed by or tank-mixed with glyphosate, which had an equivalent EI (∼ 14) to the one-pass herbicide programs. Not surprisingly because of the low purchase price of glyphosate, gross margins were highest for treatments that included glyphosate. However, to reduce the selection pressure on glyphosate-resistant weed biotypes, to reduce environmental impact, and to increase gross margins a combination of glyphosate with another mode of action would be most beneficial. In this study glyphosate + imazethapyr was the best alternative to a sequential two-pass glyphosate program.


Sign in / Sign up

Export Citation Format

Share Document