Weed Control, Environmental Impact, and Economics of Weed Management Strategies in Glyphosate-Resistant Soybean

2011 ◽  
Vol 25 (4) ◽  
pp. 535-541 ◽  
Author(s):  
Christie L. Stewart ◽  
Robert E. Nurse ◽  
Laura L. Van Eerd ◽  
Richard J. Vyn ◽  
Peter H. Sikkema

With the number of glyphosate-resistant weed species increasing in North America and a lack of new herbicide chemistries being developed, growers are shifting toward using older herbicides that are more expensive and may be less environmentally friendly. Therefore, to determine which weed management strategies are most cost effective and have the lowest impact on the environment we evaluated the efficacy, environmental impact, and the profitability of several weed management strategies in glyphosate-resistant soybean over a 3-yr period (2007 to 2009) at three locations in southwestern Ontario, Canada. No visible injury to soybean was observed with the herbicide treatments evaluated. A sequential application of glyphosate consistently provided high levels of weed control (99 to 100%) at 56 d after treatment in comparison with one- or two-pass herbicide programs. Soybean yield did not differ between the two-pass herbicide programs and glyphosate applied early POST; however, a yield benefit was found with a sequential application of glyphosate or a PRE herbicide followed by glyphosate compared with glyphosate applied only at late POST. The two-pass herbicide programs had higher environmental impact (EI) (> 23) than the one-pass herbicide programs (< 15), except when imazethapyr was followed by or tank-mixed with glyphosate, which had an equivalent EI (∼ 14) to the one-pass herbicide programs. Not surprisingly because of the low purchase price of glyphosate, gross margins were highest for treatments that included glyphosate. However, to reduce the selection pressure on glyphosate-resistant weed biotypes, to reduce environmental impact, and to increase gross margins a combination of glyphosate with another mode of action would be most beneficial. In this study glyphosate + imazethapyr was the best alternative to a sequential two-pass glyphosate program.

2013 ◽  
Vol 7 (1) ◽  
pp. 31-38
Author(s):  
N. Soltani ◽  
R.E. Nurse ◽  
C. L. Gillard ◽  
P.H. Sikkema

Twelve field trials were conducted over a three-year period (2010, 2011, 2012) at different locations in southwestern Ontario, Canada to compare various two-pass weed management strategies in glyphosate-resistant corn for crop injury, weed control, environmental impact, corn yield and profit margin. No visible injury resulted from the herbicide treatments evaluated. One early postemergence (EPOST) application of glyphosate provided good full season control of pigweed species and lady's thumb and fair control of velvetleaf, common ragweed, lamb's-quarters, barnyard grass and green foxtail. One late postemergence (LPOST) application of glyphosate provided excellent control of all weed species evaluated but corn yield was reduced due to early weed interference. The sequential application of glyphosate (EPOST fb LPOST) provided excellent control of all weed species evaluated with no adverse effect on corn yield. The sequential application of a preemergence residual herbicide followed by an application of glyphosate LPOST provided excellent full season control of all weed species evaluated and corn yield was equal to the weed free control. Among the sequential herbicide programs the lowest environmental impact was glyphosate EPOST fb LPOST and saflufenacil/dimethenamid-p, isoxaflutole + atrazine or rimsulfuron + s-metolachlor + dicamba applied PRE fb glyphosate LPOST. Based on this study, the most efficacious and profitable weed management programs in glyphosate-resistant corn are a sequential application of glyphosate or a two-pass program of a preemergence residual herbicide followed by glyphosate LPOST. The two-pass programs have glyphosate stewardship benefits.


2019 ◽  
Vol 33 (03) ◽  
pp. 411-425
Author(s):  
Andrea Smith ◽  
Nader Soltani ◽  
Allan J. Kaastra ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTransgenic crops are being developed with herbicide resistance traits to expand innovative weed management solutions for crop producers. Soybean with traits that confer resistance to the hydroxyphenylpyruvate dioxygenase herbicide isoxaflutole is under development and will provide a novel herbicide mode of action for weed management in soybean. Ten field experiments were conducted over 2 years (2017 and 2018) on five soil textures with isoxaflutole-resistant soybean to evaluate annual weed control using one- and two-pass herbicide programs. The one-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, at a low rate (52.5 + 210 g ai ha−1), medium rate (79 + 316 g ai ha−1), and high rate (105 + 420 g ai ha−1); and glyphosate applied early postemergence (EPOST) or late postemergence (LPOST). The two-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, followed by glyphosate applied LPOST, and glyphosate applied EPOST followed by LPOST. At 4 weeks after the LPOST application, control of common lambsquarters, pigweed species, common ragweed, and velvetleaf was variable at 25% to 69%, 49% to 86%, and 71% to 95% at the low, medium, and high rates of isoxaflutole plus metribuzin, respectively. Isoxaflutole plus metribuzin at the low, medium, and high rates controlled grass species evaluated (i.e., barnyardgrass, foxtail, crabgrass, and witchgrass) 85% to 97%, 75% to 99%, and 86% to 100%, respectively. All two-pass weed management programs provided 98% to 100% control of all species. Weed control improved as the rate of isoxaflutole plus metribuzin increased. Two-pass programs provided excellent, full-season annual grass and broadleaf weed control in isoxaflutole-resistant soybean.


2020 ◽  
Author(s):  
Akashdeep Singh ◽  
S. S. Rana ◽  
Anju Bala

Chickpea (Cicer arietinum) is one of the most important pulse crops but it’s productivity in India is quite low. There are various reasons for low productivity. Weed control is the basic requirement and the major component of crop management. Weeds on an average reduce the crop yield by 40-87 per cent. Deciding time to control weeds requires detailed knowledge of the weed populations in the field. Different management practices like altering spacing, competitive cultivars, etc. can help in enhancing the productivity. With the world entering the precision-farming era, more emphasis is being put on the use of post-emergence herbicides. Application of two or more herbicide at the same time or as a double knockdown and integrating with hand-weeding provides desirable control of different weed species besides reducing the hazard of chemical weed control.


1996 ◽  
Vol 10 (2) ◽  
pp. 327-336 ◽  
Author(s):  
J. Rolf Olsen ◽  
Jayson K. Harper ◽  
William S. Curran

A computer model which selects least cost herbicide programs given a minimum desired level of weed control could provide growers with economical weed management options. Using an integer programming approach, a herbicide selection model was developed for corn production under Pennsylvania conditions. Models for three rotations (corn-soybean, corn-corn, and corn-alfalfa) under three tillage systems (conventional tillage, reduced tillage, and no-till) that evaluated 21 soil-applied and 13 postemergence herbicide options for 24 weeds were developed. Each model minimizes the cost of a herbicide program subject to a desired level of weed control. By selecting the weed species to be controlled and the level of control desired, customized herbicide programs can be generated. The models can also be used to evaluate the cost of changing the level of control desired for an individual weed species or set of weeds.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Seth B. Abugho

Crop residues acting as mulches can influence weed seedling emergence and weed biomass. A field study was conducted to evaluate the effect of rice residue amounts (0, 3, and 6 t ha−1) on seedling emergence of eight weed species in zero-till dry-seeded rice. The highest seedling emergence of spiny amaranth, southern crabgrass, crowfootgrass, junglerice, eclipta, goosegrass, and Chinese sprangletop was observed in the absence of residue. Seedling emergence of these weeds declined with increasing residue amounts; however, the greatest and most substantial reductions in emergence occurred with 6 t ha−1of residue. The presence of residue also resulted in less weed biomass than with the no-residue treatment. The emergence and biomass of threelobe morningglory seedlings, however, were not influenced by residue amounts. The use of residue also increased the time taken to reach 50% of maximum emergence for some species, for example, spiny amaranth and Chinese sprangletop. The results of our study suggest that the use of residue at high rates can help suppress seedling emergence and growth of many weeds. However, there is a need to integrate other weed management strategies with residue retention to achieve season-long weed control.


2012 ◽  
Vol 03 (11) ◽  
pp. 1594-1607 ◽  
Author(s):  
Nader Soltani ◽  
Christie L. Stewart ◽  
Robert E. Nurse ◽  
Laura L. Van Eerd ◽  
Richard J. Vyn ◽  
...  

2012 ◽  
Vol 26 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Anil Shrestha ◽  
Marcelo Moretti ◽  
Nathalia Mourad

Sustainable weed management strategies are needed for organic orchard systems. A study was conducted in an almond orchard in Fresno, CA from 2009 to 2011. Treatment comparisons included steam, flame, and broad applications of either lemongrass oil or D-limonene. An untreated control was also included. The experimental design was a randomized complete block with four replications. Weekly evaluations on percent weed control were taken and weed biomass was sampled 4 to 8 wk after treatment (WAT). Weed control and biomass differed between seasons but, in general, steam and flame provided as much as 95% control 1 WAT. However, the effects lasted only 3 to 4 wk as new weeds emerged or the treated weeds overcame the suppressive effects of the thermal treatments. Weed biomass was 95% lower in the steam- and flame-treated plots compared with the untreated plots in summer. Both steam and flame were more effective on certain erect-growing broad-leaved weed species than on prostrate-growing weeds and grasses. Lemongrass oil provided very little weed control. However, D-limonene provided up to 95% weed control 1 WAT and in one experiment 53% control was observed up to 5 WAT. This herbicide also resulted in lower weed biomass than the untreated and the thermal-treated plots. Monthly applications of steam or flame or applications of D-limonene every 5 to 6 wk may have to be made to adequately suppress weeds in organic almond orchards. Cost estimates of propane use were $41 to 56 ha−1 and $26 ha−1 for the steam and flame treatments, respectively. The cost of D-limonene was estimated as $275 ha−1. To optimize weed control and costs, these tools may need to be used in combination rather than by themselves.


2008 ◽  
Vol 22 (4) ◽  
pp. 685-690 ◽  
Author(s):  
Oleg Daugovish ◽  
Steven A. Fennimore ◽  
Maren J. Mochizuki

Field trials were conducted at three California locations near Oxnard, Salinas, and Watsonville from 2002 to 2006 to evaluate broadleaf weed control and tolerance of strawberry to oxyfluorfen. Oxyfluorfen applied at 0.3 and 0.6 kg/ha before strawberry transplanting reduced densities of broadleaf weeds such as California burclover, hairy nightshade, little mallow, shepherd's-purse, and yellow sweetclover 70 to 100% compared with nontreated plots but did not control horseweed. Oxyfluorfen application resulted in 9% and 19% greater visible injury to strawberry for the two rates, respectively, compared with nontreated plants in 1 yr but did not reduce strawberry yield. After oxyfluorfen application at 0.6 kg/ha, strawberry plants had 5 to 48% more injury than nontreated plants in subsequent years but early-season yields were similar. Hand-weeding time was reduced 30 to 50% compared with nontreated plots regardless of oxyfluorfen rate. Both water-based and solvent-carrier formulations of oxyfluorfen resulted in similar weed control, strawberry injury, and fruit yield. Plastic mulch installation after oxyfluorfen application but before planting reduced injury to strawberry more than 50% compared with nonmulched beds. Oxyfluorfen applied 30 d before strawberry transplanting had similar crop injury and yield to applications made 15 and 7 d before planting. These results suggest that oxyfluorfen can be used safely in California plasticulture strawberry production for control of common weed species and to reduce labor inputs associated with hand weeding.


1991 ◽  
Vol 67 (5) ◽  
pp. 514-519 ◽  
Author(s):  
Robert Jobidon

During the past decade, considerable research efforts have been devoted towards non-chemical weed control. Some of these efforts have been directed towards the control of forest weed species. Non-chemical control of forest vegetation encompasses many approaches and techniques and only a few of them are discussed in this paper. Three major and promising research areas are identified: (1) allelopathy, (2) microbially produced phytotoxins, and (3) bio-control. Each of these weed management strategies is briefly presented and discussed using examples from the forestry literature.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 448 ◽  
Author(s):  
Hossein Ghanizadeh ◽  
Kerry C. Harrington

In New Zealand, pastoral farming for dairy and meat production is the major land use. As with any agricultural production system, weeds are a threat to efficient pasture production in New Zealand. In this review, we outline the problems caused by weeds in New Zealand pastures, and the management strategies being used to control them. There are currently 245 plant species from 40 plant families that are considered to be troublesome weeds in New Zealand pastures. The application of herbicides is an important approach to manage weeds in New Zealand pastures; however, a key to the success of these pastures is the use of clovers in combination with the grasses, so the challenge is to find herbicides that selectively control weeds without damaging these legumes. The use of spot spraying and weed wiping are often required to ensure selective control of some weed species in these pastures. Non-chemical agronomic approaches such as grazing management and using competitive pasture species often play a more important role than herbicides for weed management in many New Zealand pastures. Thus, integrated weed management using a combination of herbicides and good pasture management strategies leads to the most cost-effective and efficient control of pasture weeds in New Zealand.


Sign in / Sign up

Export Citation Format

Share Document