Irrigation Methods affect critical period of weed competition in potato production

2012 ◽  
Author(s):  
Ghafori
1970 ◽  
Vol 33 (4) ◽  
pp. 623-629 ◽  
Author(s):  
MSA Khan ◽  
MA Hossain ◽  
M Nurul Islam ◽  
SN Mahfuza ◽  
MK Uddin

Field experiments were conducted at the research farm of Bangladesh Agricultural Research Institute, Joydebpur during kharif-1 (March to July) seasons of 2005 and 2006 to identify the critical period of crop-weed competition for Indian spinach. Major weed species were Paspalurn commersoni, Echinochlaa crusgalli. Lie nv/nc india. Cyanotis axillaris and Cyperus rotundus. The lowest weed dry matter was 76.3 g m-2 in 2005 and l01.60 g m-2 in 2006 from the plots weeded up to 40 days after transplanting (DAT). The highest yields were obtained (74.82 t ha in 2005 and 48.48 t ha in 2006) from the weed free plots. The fresh yield of Indian spinach did not vary among no weeding upto 20, 30 and 40 DAT in 2006. But weeded plot upto 30 and 40 DAT produced identical yield in 2005. Maximum BCR (4.52) was obtained from weeded plots upto 30 DAT in 2005 but BCR (2.60) was same from weeded upto 30 and 40 DA F in 2006. On an average, highest BCR (3.55) was recorded from weeding upto 30 DAT. Results revealed that the critical period of crop weed competition lies between 20 and 30 DAT and two times hand weeding would be necessary within 30 DAT for maximum benefit. Key Words: Crop-weed competitions, critical period, weed management and Indian spinach. doi: 10.3329/bjar.v33i4.2306 Bangladesh J. Agril. Res. 33(4) : 623-629, December 2008


Weed Science ◽  
1995 ◽  
Vol 43 (4) ◽  
pp. 634-639 ◽  
Author(s):  
Claudio M. Dunan ◽  
Philip Westra ◽  
Edward E. Schweizer ◽  
Donald W. Lybecker ◽  
Frank D. Moore

The question of when to control weeds traditionally has been approached with the calculation of critical periods (CP) based on crop yields. The concept of economic critical period (ECP) and early (EEPT) and late (LEFT) economic period thresholds are presented as a comprehensive approach to answer the same question based on economic losses and costs of control. ECP is defined as the period when the benefit of controlling weeds is greater than its cost. EEPT and LEFT are the limits of the ECP and can be used to determine when first and last weed control measures should be performed. Calculation of EEPT accounts for the economic losses due to weed competition that occur between planting and postemergence weed control. In this way it is possible to better evaluate the economic feasibility of using preplant or preemergence control tactics. The EEPT for DCPA application is analyzed in the context of onion production in Colorado. The EEPT for DCPA application was calculated from an empirical regression model that assessed the impact of weed load and time of weed removal on onion yields. The EEPT was affected by control efficacy, weed-free yield, DCPA cost, and onion price. DCPA application was economically advisable in only one of 20 fields analyzed because of the tow DCPA efficacy (60%).


2014 ◽  
Vol 32 (1) ◽  
pp. 31-38 ◽  
Author(s):  
D. Agostinetto ◽  
L.C. Fontana ◽  
L. Vargas ◽  
L.T. Perboni ◽  
E. Polidoro ◽  
...  

Determining the periods of weed competition with crops helps the producer to choose the most appropriate time to use weed control practices. This strategy allows for the reduction of the number of herbicide applications, reducing costs and the environmental impact of pesticides. The objectives were to determine the period before the interference (PBI) of crabgrass (Digitaria ciliaris) competing with flooded rice, the critical period of interference prevention (CPIP) of crabgrass with soybean and the effects of competition on the grains yield and their components. Experiments were conducted with the coexistence of BRS Querência rice cultivar with crabgrass, for periods of 0, 7, 14, 21, 28, 35, and 110 days after emergency (DAE) and Fundacep 53RR soybean cultivar, whose periods of coexistence and control of crabgrass were 0, 7, 14, 21, 28, 35, and 156 DAE. Rice can grow with crabgrass infestation until 18 DAE, while soybean should remain free from the presence of crabgrass in the period between 23 and 50 DAE. The grain yield and its components, in the crops studied, are affected when grown with crabgrass.


2016 ◽  
Vol 65 (4) ◽  
pp. 502-513 ◽  
Author(s):  
Gordana Matović ◽  
Zoran Broćić ◽  
Sonja Djuričin ◽  
Enike Gregorić ◽  
Duško Bodroža

1983 ◽  
Vol 19 (4) ◽  
pp. 341-347 ◽  
Author(s):  
R. Vernon ◽  
J. M. H. Parker

SUMMARYTwo sets of experiments examined the effects of weeds on maize yields using weeding methods typical of small farms in Zambia where oxen are used for cultivation. Maize yield losses of 30% due to weeds were evident with common weeding practices. A critical period of competition, during which the crop should be kept clean, was demonstrated from 10 to 30 days after emergence. This is a period of peak labour demand and the prospect of using chemical weed control to ease the situation is considered. The value of weed competition data, given its variability between sites, is discussed.


2009 ◽  
Vol 121 (3) ◽  
pp. 249-254 ◽  
Author(s):  
Goudarz Ahmadvand ◽  
Farzad Mondani ◽  
Farid Golzardi

1981 ◽  
Vol 17 (1) ◽  
pp. 85-89
Author(s):  
A. S. Abubaker ◽  
A. M. Gurnah

SUMMARYUsing the sugar cane cultivar Co 421, competition from weeds for the whole growing season was compared at three row spacings with competition for periods ranging from 15–120 days at the start of the season or later, and weed-free conditions all through the season. The critical period for weed competition was the first three months, since weeding during the remaining 11 months did not improve yields, which were similar at row spacings of 1, 1·25 or 1·5 m. There were no interactions between the weeding and spacing treatments.


2005 ◽  
Vol 40 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Marcelo Nicolai ◽  
Axel Garcia ◽  
Pedro Christoffoleti ◽  
Durval Neto ◽  
Fernando Martins ◽  
...  

Author(s):  
Ravindra Singh ◽  
Sharda Choudhary ◽  
R.S. Mehta ◽  
O.P. Aishwath ◽  
G. Lal

Background: Weed populations reduce crop yields by influencing the pattern of crop growth and development throughout the season and by directly competing with the crop for limiting precious resources, like light, water or nutrients. A number of the factors that influence magnitude of crop yield losses from weed interference include the timing of weed emergence relative to the crop, weed density, pattern of weed growth and development. Weed management is one among the foremost critical factors influencing crop yield. By providing a window of weed-free growth early within the season, the size advantage that crop seedlings have over weeds can be utilized to reduce the intensity of direct competition for resources at the stages of crop development when yield is being determined. Weeds are identified as a significance drawback since they create biotic stress in realizing the genetic yield potential of this valuable crop.Methods: A field experiment was carried out during the rabi season of 2010-11 to 2014-15 at ICAR- National Research Centre on Seed Spices, Ajmer, Rajasthan to estimate the yield losses because of weed infestation and to work out the critical period for weed control (CPWC) in fenugreek (Trigonella foenum-graecum L.). There were 14 treatments comprising of initial weedy periods of 15, 30, 45, 60, 75, 90 days after sowing (DAS) and weed free period upto 15, 30, 45, 60, 75, 90 DAS along with weedy till harvest (un-weeded check) and weed free till harvest (weed free check). The treatments were replicated three times in a randomized block design.Result: Maximum pod length (cm), number of pods/plant, number of seed/pod, test weight (g), seed yield (kg/ha), straw yield (kg/ha) and harvesting index (%) to the tune of 9.47, 41.2, 16.67, 12.60, 2297, 4954 and 31.73 were recorded at weed free throughout growth period. Weed infestation up to 30, 45, 60, 75, 90 DAS and weedy throughout growth period reduced the seed yield significantly to the magnitude of 567.3, 801.7, 913.3, 1253.3, 1393.7 and 1736.3 kg/ha. Yield losses in fenugreek increase from 2.95 kg/ha/day at 15 days weed infestation to 12.31 kg/ha/day at 135 days weed infestation. Maximum gross return (`104248/ha), net return (`67018/ha) were obtained at weed free throughout growth period with the B:C ratio 2.80 among the weed free treatments. The employment of response curves with weed free or weed competition period showed that seed yield of fenugreek were the highest with the field free from weeds throughout the growth period and the critical period of weed/fenugreek competition was 32 days after sowing and lies between 30-45 days after sowing. In regression approach for fenugreek seed yield and weed free or weed competition period the quadratic function was fitted to estimate the expected yields which had the high significant with the data recorded and have the highest values of R2. If we predict the seed yield losses based on the quadratic model for weed free period model, it declined from 42.04 at 0 DAS to 0.0% at 135 days. Similarly, weed infestation period model predicted the seed yield losses increased from 0.00 at 0 days weed infestation to 73.42% at 135 days. Critical period for weed competition in fenugreek was found to be 32 days after sowing. The CPWC is helpful for making decisions on the necessity for and timing of weed control.


Sign in / Sign up

Export Citation Format

Share Document