Evaluation of Wick-Applied Glyphosate for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato

2016 ◽  
Vol 30 (3) ◽  
pp. 765-772 ◽  
Author(s):  
Stephen L. Meyers ◽  
Katherine M. Jennings ◽  
Jonathan R. Schultheis ◽  
David W. Monks

Studies were conducted in 2007 and 2008 at Clinton, NC to determine the effect of glyphosate applied POST via a Dixie wick applicator on Palmer amaranth control and sweetpotato yield and quality. In 2007, treatments consisted of glyphosate wicked sequentially 6 and 8 wk after transplanting (WAP) and glyphosate wicked sequentially 6 and 8 WAP followed by (fb) rotary mowing 9 WAP. In 2008, treatments consisted of glyphosate wicked once 4 or 7 WAP, wicked sequentially 4 and 7 WAP, mowed once 4 WAP, and mowed 4 WAP fb wicking 7 WAP. In 2008, Palmer amaranth control 6 WAP varied by location and averaged 10 and 58% for plots wicked 4 WAP. Palmer amaranth contacted by the wicking apparatus were controlled, but weeds shorter than the wicking height escaped treatment. Palmer amaranth control 9 WAP was greater than 90% for all treatments wicked 7 WAP. Competition prior to and between glyphosate treatments contributed to large sweetpotato yield losses. Treatments consisting of glyphosate 7 or 8 WAP (in 2007 and 2008, respectively) frequently had greater no. 1 and marketable yields compared to the weedy control. However, jumbo, no. 1, and marketable yields for all glyphosate and mowing treatments were generally less than half the hand-weeded check. Cracked sweetpotato roots were observed in glyphosate treatments and percent cracking (by weight) in those plots ranged from 1 to 12% for no. 1 roots, and 1 to 6% for marketable roots. Findings from this research suggest wicking might be useful in a salvage scenario, but only after currently registered preemergence herbicides and between-row cultivation have failed to control Palmer amaranth and other weed species below the sweetpotato canopy.

Weed Science ◽  
2010 ◽  
Vol 58 (3) ◽  
pp. 199-203 ◽  
Author(s):  
Stephen L. Meyers ◽  
Katherine M. Jennings ◽  
Jonathan R. Schultheis ◽  
David W. Monks

Field studies were conducted in 2007 and 2008 at Clinton and Faison, NC, to evaluate the influence of Palmer amaranth density on ‘Beauregard’ and ‘Covington’ sweetpotato yield and quality and to quantify the influence of Palmer amaranth on light interception. Palmer amaranth was established at 0, 0.5, 1.1, 1.6, 3.3, and 6.5 plants m−1within the sweetpotato row and densities were maintained season-long. Jumbo, number (no.) 1, and marketable sweetpotato yield losses were fit to a rectangular hyperbola model, and predicted yield loss ranged from 56 to 94%, 30 to 85%, and 36 to 81%, respectively for Palmer amaranth densities of 0.5 to 6.5 plants m−1. Percentage of jumbo, no. 1, and marketable sweetpotato yield loss displayed a positive linear relationship with Palmer amaranth light interception as early as 6 to 7 wk after planting (R2= 0.99, 0.86, and 0.93, respectively). Predicted Palmer amaranth light interception 6 to 7, 10, and 13 to 14 wk after planting ranged from 47 to 68%, 46 to 82%, and 42 to 71%, respectively for Palmer amaranth densities of 0.5 to 6.5 plants m−1. Palmer amaranth height increased from 177 to 197 cm at densities of 0.5 to 4.1 plants m−1and decreased from 197 to 188 cm at densities of 4.1 to 6.5 plants m−1; plant width (69 to 145 cm) and shoot dry biomass plant−1(0.2 to 1.1 kg) decreased linearly as density increased.


Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Wesley J. Everman ◽  
Walter E. Thomas ◽  
James D. Burton ◽  
Alan C. York ◽  
John W. Wilcut

Greenhouse studies were conducted to evaluate absorption, translocation, and metabolism of14C-glufosinate in glufosinate-resistant cotton, nontransgenic cotton, Palmer amaranth, and pitted morningglory. Cotton plants were treated at the four-leaf stage, whereas Palmer amaranth and pitted morningglory were treated at 7.5 and 10 cm, respectively. All plants were harvested at 1, 6, 24, 48, and 72 h after treatment (HAT). Absorption of14C-glufosinate was greater than 85% 24 h after treatment in Palmer amaranth. Absorption was less than 30% at all harvest intervals for glufosinate-resistant cotton, nontransgenic cotton, and pitted morningglory. At 24 HAT, 49 and 12% of radioactivity was translocated to regions above and below the treated leaf, respectively, in Palmer amaranth. Metabolites of14C-glufosinate were detected in all crop and weed species. Metabolism of14C-glufosinate was 16% or lower in nontransgenic cotton and pitted morningglory; however, metabolism rates were greater than 70% in glufosinate-resistant cotton 72 HAT. Intermediate metabolism was observed for Palmer amaranth, with metabolites comprising 20 to 30% of detectable radioactivity between 6 and 72 HAT.


2019 ◽  
Vol 99 (6) ◽  
pp. 815-823 ◽  
Author(s):  
Parminder S. Chahal ◽  
Mithila Jugulam ◽  
Amit J. Jhala

Palmer amaranth (Amaranthus palmeri S. Wats.) is one of the most problematic weed species in agronomic crops in the United States. A Palmer amaranth biotype multiple-resistant to atrazine and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors was reported in a seed corn production field in Nebraska. Rapid detoxification mediated by cytochrome P450 monooxygenases and increased HPPD gene expression were reported as the mechanisms of mesotrione resistance in atrazine- and HPPD inhibitor-resistant Palmer amaranth biotype from Nebraska; however, the mechanism of atrazine resistance is unknown. The objectives of this study were to investigate target site or non-target site based mechanisms conferring atrazine resistance in Palmer amaranth from Nebraska. 14C-atrazine absorption and translocation studies revealed that reduced atrazine absorption or translocation were not involved as one of the mechanisms of atrazine resistance. Instead, greater 14C-atrazine absorption and recovery in treated leaves were observed in resistant compared with susceptible Palmer amaranth. No known mutations including Ser264Gly substitution in the psbA gene causing target site based atrazine resistance were observed. However, the parent 14C-atrazine was metabolized rapidly <4 h after treatment in resistant plants, conferring enhanced atrazine metabolism as the mechanism of resistance.


2019 ◽  
Author(s):  
Kaisa M. Werner ◽  
Debalin Sarangi ◽  
Scott A. Nolte ◽  
Peter A. Dotray ◽  
Muthukumar V. Bagavathiannan

AbstractDespite the best weed control efforts, weed escapes are often present in large production fields prior to harvest, contributing to seed rain and species persistence. Late-season surveys were conducted in cotton (Gossypium hirsutum L.) fields in Texas in 2016 and 2017 to identify common weed species present as escapes and estimate seed rain potential of Palmer amaranth (Amaranthus palmeri S. Watson) and waterhemp [A. tuberculatus (Moq.) J.D. Sauer], two troublesome weed species with high fecundity. A total of 400 cotton fields across four major cotton-producing regions in Texas [High Plains (HP), Gulf Coast (GC), Central Texas, and Blacklands] were surveyed. Results have revealed that A. palmeri, Texas millet [Urochloa texana (Buckley) R. Webster], A. tuberculatus, ragweed parthenium (Parthenium hysterophorus L.), and barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] were the top five weed escapes present in cotton fields. Amaranthus palmeri was the most prevalent weed in the HP and Lower GC regions, whereas A. tuberculatus escapes were predominantly observed in the Upper GC and Blacklands regions. On average, 9.4% of an individual field was infested with A. palmeri escapes in the Lower GC region; however, it ranged between 5.1 and 8.1% in the HP region. Average A. palmeri density ranged from 405 (Central Texas) to 3,543 plants ha−1 (Lower GC). The greatest seed rain potential by A. palmeri escapes was observed in the upper HP region (13.9 million seeds ha−1), whereas the seed rain potential of A. tuberculatus escapes was the greatest in the Blacklands (12.9 million seeds ha−1) and the upper GC regions (9.8 million seeds ha−1). Results indicated that seed rain from late-season A. palmeri and A. tuberculatus escapes are significant in Texas cotton, and effective management of these escapes is imperative for minimizing seedbank inputs and impacting species persistence.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Nicholas T. Basinger ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Wesley J. Everman ◽  
...  

AbstractField studies were conducted in 2016 and 2017 at Clinton, NC, to quantify the effects of season-long interference of large crabgrass [Digitaria sanguinalis (L.) Scop.] and Palmer amaranth (Amaranthus palmeri S. Watson) on ‘AG6536’ soybean [Glycine max (L.) Merr.]. Weed density treatments consisted of 0, 1, 2, 4, and 8 plants m−2 for A. palmeri and 0, 1, 2, 4, and 16 plants m−2 for D. sanguinalis with (interspecific interference) and without (intraspecific interference) soybean to determine the impacts on weed biomass, soybean biomass, and seed yield. Biomass per square meter increased with increasing weed density for both weed species with and without soybean present. Biomass per square meter of D. sanguinalis was 617% and 37% greater when grown without soybean than with soybean, for 1 and 16 plants m−2 respectively. Biomass per square meter of A. palmeri was 272% and 115% greater when grown without soybean than with soybean for 1 and 8 plants m−2, respectively. Biomass per plant for D. sanguinalis and A. palmeri grown without soybean was greatest at the 1 plant m−2 density. Biomass per plant of D. sanguinalis plants across measured densities was 33% to 83% greater when grown without soybean compared with biomass per plant when soybean was present for 1 and 16 plants m−2, respectively. Similarly, biomass per plant for A. palmeri was 56% to 74% greater when grown without soybean for 1 and 8 plants m−2, respectively. Biomass per plant of either weed species was not affected by weed density when grown with soybean due to interspecific competition with soybean. Yield loss for soybean grown with A. palmeri ranged from 14% to 37% for densities of 1 to 8 plants m−2, respectively, with a maximum yield loss estimate of 49%. Similarly, predicted loss for soybean grown with D. sanguinalis was 0 % to 37% for densities of 1 to 16 m−2 with a maximum yield loss estimate of 50%. Soybean biomass was not affected by weed species or density. Results from these studies indicate that A. palmeri is more competitive than D. sanguinalis at lower densities, but that similar yield loss can occur when densities greater than 4 plants m−2 of either weed are present.


2017 ◽  
Vol 31 (4) ◽  
pp. 617-622 ◽  
Author(s):  
Lauren M. Schwartz-Lazaro ◽  
Jeremy K. Green ◽  
Jason K. Norsworthy

Harvest weed seed control is an alternative non-chemical approach to weed management that targets escaped weed seeds at the time of crop harvest. Relatively little is known on how these methods will work on species in the US. Two of the most prominent weeds in soybean production in the midsouthern US are Palmer amaranth and barnyardgrass. Typically, when crop harvesting occurs the weed seed has already either shattered or is taken into the combine and may be redistributed in the soil seedbank. This causes further weed seed spread and may contribute to the addition of resistant seeds in the seedbank. There is little research on how much seed is retained on different weed species at or beyond harvest time. Thus, the objective of this study was to determine the percentage of total Palmer amaranth and barnyardgrass seed production that was retained on the plant during delayed soybean harvest. Retained seed over time was similar between 2015 and 2016, but was significantly different between years for only Palmer amaranth. Seed retention did not differ between years for either weed species. Palmer amaranth and barnyardgrass retained 98 and 41% of their seed at soybean maturity and 95 and 32% of their seed one month after soybean maturity, respectively. Thus, this research indicates that if there are escaped Palmer amaranth plants and soybean is harvested in a timely manner, most seed will enter the combine and offer potential for capture or destruction of these seeds using harvest weed seed control tactics. While there would be some benefit to using HWSC for barnyardgrass, the utility of this practice on mitigating herbicide resistance would be less pronounced than that of Palmer amaranth because of the reduced seed retention or early seed shatter.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 240-247 ◽  
Author(s):  
William T. Molin ◽  
Vijay K. Nandula ◽  
Alice A. Wright ◽  
Jason A. Bond

Transfer of herbicide resistance among closely related weed species is a topic of growing concern. A spiny amaranth × Palmer amaranth hybrid was confirmed resistant to several acetolactate synthase (ALS) inhibitors including imazethapyr, nicosulfuron, pyrithiobac, and trifloxysulfuron. Enzyme assays indicated that the ALS enzyme was insensitive to pyrithiobac and sequencing revealed the presence of a known resistance conferring point mutation, Trp574Leu. Alignment of the ALS gene for Palmer amaranth, spiny amaranth, and putative hybrids revealed the presence of Palmer amaranth ALS sequence in the hybrids rather than spiny amaranth ALS sequences. In addition, sequence upstream of the ALS in the hybrids matched Palmer amaranth and not spiny amaranth. The potential for transfer of ALS inhibitor resistance by hybridization has been demonstrated in the greenhouse and in field experiments. This is the first report of gene transfer for ALS inhibitor resistance documented to occur in the field without artificial/human intervention. These results highlight the need to control related species in both field and surrounding noncrop areas to avoid interspecific transfer of resistance genes.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 275 ◽  
Author(s):  
Mafia M. Rumpa ◽  
Ronald F. Krausz ◽  
David J. Gibson ◽  
Karla L. Gage

Amaranthus palmeri S. Watson (Palmer amaranth) is a fast-growing, dioecious, highly competitive agricultural weed species, which is spreading across the US Midwest. Population sex ratios are an important consideration in the management of A. palmeri populations as this species has become resistant to several herbicide sites of action, and there is need to minimize seed production by female plants. Environmental conditions, particularly stressors, may influence sex ratios, and herbicides act as major stressors and evolutionary filters in agricultural fields. Amaranthus spp. have shown a tendency for rapid evolution of herbicide resistance, with the frequency of protoporphyrinogen oxidase (PPO)-inhibitor resistance increasing across the Midwestern US. A greenhouse experiment was conducted to investigate the effect of two PPO-inhibiting herbicide treatments of either lactofen or fomesafen on four different Illinois populations (Cahokia, Collinsville, Rend Lake, and Massac). Plants raised from seed from the Massac population were tallest, and both males and females from this population also had the highest vegetative biomass. Female plants from the Collinsville population had more reproductive biomass than male plants. Control populations were male-biased (Cahokia, Collinsville), female-biased (Masaac), and 1:1 (Rend Lake). Lactofen shifted the male-biased populations to female-biased or 1:1 and the female-biased population to 1:1. Fomesafen-treated populations were male-biased or 1:1. This study suggests that PPO-inhibiting herbicide treatments may influence the growth and sex ratio of A. palmeri populations, which is an underlying factor in the rate of herbicide evolution in this species. An understanding of the underlying mechanisms of how external factors influence sex ratios may eventually provide an opportunity to reduce seed production in populations by shifting sex ratios towards a male bias.


1991 ◽  
Vol 5 (1) ◽  
pp. 137-141 ◽  
Author(s):  
J. Wayne Keeling ◽  
Kerry T. Siders ◽  
John R. Abernathy

Weed control is a limiting factor for adoption of conservation tillage systems on the Texas Southern High Plains. A field study was established to evaluate Palmer amaranth control with strip-tillage dinitroaniline herbicide incorporation in wheat residue. Preemergence herbicides were applied alone and in combination with strip-tilled incorporated herbicides. Significant cotton injury or stand reductions were not observed with any treatment. Effective (>80%) early season Palmer amaranth control was achieved with trifluralin or pendimethalin in conjunction with preemergence herbicides. Preemergence herbicides alone did not provide adequate control.


Sign in / Sign up

Export Citation Format

Share Document