scholarly journals Occurrence and Habitats of CAM Plants Distributed in Japan

2021 ◽  
Vol 90 (3) ◽  
pp. 277-299
Author(s):  
Yasuyuki Yoshimura
Keyword(s):  
2021 ◽  
pp. 1-15
Author(s):  
Catalina P. Tomé ◽  
S. Kathleen Lyons ◽  
Seth D. Newsome ◽  
Felisa A. Smith

Abstract The late Quaternary in North America was marked by highly variable climate and considerable biodiversity loss including a megafaunal extinction event at the terminal Pleistocene. Here, we focus on changes in body size and diet in Neotoma (woodrats) in response to these ecological perturbations using the fossil record from the Edwards Plateau (Texas) across the past 20,000 years. Body mass was estimated using measurements of fossil teeth and diet was quantified using stable isotope analysis of carbon and nitrogen from fossil bone collagen. Prior to ca. 7000 cal yr BP, maximum mass was positively correlated to precipitation and negatively correlated to temperature. Independently, mass was negatively correlated to community composition, becoming more similar to modern over time. Neotoma diet in the Pleistocene was primarily sourced from C3 plants, but became progressively more reliant on C4 (and potentially CAM) plants through the Holocene. Decreasing population mass and higher C4/CAM consumption was associated with a transition from a mesic to xeric landscape. Our results suggest that Neotoma responded to climatic variability during the terminal Pleistocene through changes in body size, while changes in resource availability during the Holocene likely led to shifts in the relative abundance of different Neotoma species in the community.


1997 ◽  
Vol 24 (4) ◽  
pp. 459 ◽  
Author(s):  
Robert P. Walker ◽  
Richard M. Acheson ◽  
László I. Técsi ◽  
Richard C. Leegood

Some of the recent findings which revise our view of the role and regulation of phosphoenolpyruvate carboxykinase (PEPCK) in C4 plants are discussed. Evidence is presented that PEPCK is present at appreciable activities in the bundle-sheath of some NADP-malic enzyme-type C4 plants, such as maize, but it was not detectable in NAD-malic enzyme-type C4 plants. PEPCK is rapidly inactivated in crude extracts of leaves of the C4 plant, Panicum maximum. This inactivation could be prevented by high concentrations of dithiothreitol or by the inclusion of ADP or ATP, suggesting the involvement of thiols at the active site. PEPCK is also subject to rapid proteolysis in crude extracts of a range of C4 plants, resulting in cleavage to a smaller (62 kDa) form. This can be reduced by extraction at high pH and by the inclusion of SDS, but it means that intact PEPCK has never been purified from a C4 plant. The molecular mass of PEPCK varies considerably in C4 plants, unlike C3 and CAM plants in which it is usually 74 kDa. PEPCK is phosphorylated during darkness (and reversed by light) in some C4 plants with PEPCK of a larger molecular mass, such as Panicum maximum (71 kDa), but it was not phosphorylated in the PEPCK-type C4 plant, Sporobolus pyramidalis (69 kDa). The known regulatory properties of PEPCK are discussed in relation to its role in C4 photosynthesis, in particular its sensitivity to regulation by adenylates and by Mn2+.


2003 ◽  
Vol 31 (3) ◽  
pp. 728-730 ◽  
Author(s):  
H.G. Nimmo

Crassulacean acid metabolism (CAM) plants exhibit persistent circadian rhythms of CO2 metabolism. These rhythms are driven by changes in the flux through phosphoenolpyruvate carboxylase, which is regulated by reversible phosphorylation in response to a circadian oscillator. This article reviews progress in our understanding of the circadian expression of phosphoenolpyruvate carboxylase kinase.


2021 ◽  
pp. 1083-1098
Author(s):  
Karina E.J. Trípodi ◽  
Bruno E. Rojas ◽  
Alberto A. Iglesias ◽  
Florencio E. Podestá
Keyword(s):  

2019 ◽  
Vol 442 (1-2) ◽  
pp. 483-495 ◽  
Author(s):  
Heng Huang ◽  
Kailiang Yu ◽  
Ying Fan ◽  
Paolo D’Odorico

GigaScience ◽  
2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Jin Zhang ◽  
Rongbin Hu ◽  
Avinash Sreedasyam ◽  
Travis M Garcia ◽  
Anna Lipzen ◽  
...  

Abstract Background Crassulacean acid metabolism (CAM), a specialized mode of photosynthesis, enables plant adaptation to water-limited environments and improves photosynthetic efficiency via an inorganic carbon-concentrating mechanism. Kalanchoë fedtschenkoi is an obligate CAM model featuring a relatively small genome and easy stable transformation. However, the molecular responses to light quality and intensity in CAM plants remain understudied. Results Here we present a genome-wide expression atlas of K. fedtschenkoi plants grown under 12 h/12 h photoperiod with different light quality (blue, red, far-red, white light) and intensity (0, 150, 440, and 1,000 μmol m–2 s–1) based on RNA sequencing performed for mature leaf samples collected at dawn (2 h before the light period) and dusk (2 h before the dark period). An eFP web browser was created for easy access of the gene expression data. Based on the expression atlas, we constructed a light-responsive co-expression network to reveal the potential regulatory relationships in K. fedtschenkoi. Measurements of leaf titratable acidity, soluble sugar, and starch turnover provided metabolic indicators of the magnitude of CAM under the different light treatments and were used to provide biological context for the expression dataset. Furthermore, CAM-related subnetworks were highlighted to showcase genes relevant to CAM pathway, circadian clock, and stomatal movement. In comparison with white light, monochrome blue/red/far-red light treatments repressed the expression of several CAM-related genes at dusk, along with a major reduction in acid accumulation. Increasing light intensity from an intermediate level (440 μmol m−2 s−1) of white light to a high light treatment (1,000 μmol m–2 s–1) increased expression of several genes involved in dark CO2 fixation and malate transport at dawn, along with an increase in organic acid accumulation. Conclusions This study provides a useful genomics resource for investigating the molecular mechanism underlying the light regulation of physiology and metabolism in CAM plants. Our results support the hypothesis that both light intensity and light quality can modulate the CAM pathway through regulation of CAM-related genes in K. fedtschenkoi.


2005 ◽  
Vol 32 (5) ◽  
pp. 421 ◽  
Author(s):  
Liezel M. Gouws ◽  
C. Barry Osmond ◽  
Ulrich Schurr ◽  
Achim Walter

Distinct diel rhythms of leaf and cladode expansion growth were obtained in crassulacean acid metabolism (CAM) plants under water-limited conditions, with maxima at mid-day during phase III of CO2 assimilation. This pattern coincided with the availability of CO2 for photosynthesis and growth during the decarboxylation of malic acid, with maximum cell turgor due to the nocturnally accumulated malic acid, and with the period of low cytoplasmic pH associated with malic acid movement from vacuole to cytosol. Maximum growth rates were generally only 20% of those in C3 plants and were reached at a different time of the day compared with C3 plants. The results suggest that malic acid, as a source of carbohydrates, and a determinant of turgor and cytoplasmic pH, plays a major role in the control of diel growth dynamics in CAM plants under desert conditions. The observed plasticity in phasing of growth rhythms under situations of differing water availability suggests that a complex network of factors controls the diel growth patterns in CAM plants and needs to be investigated further.


Sign in / Sign up

Export Citation Format

Share Document