Establishing a framework for archosaur cranial mechanics

Paleobiology ◽  
2008 ◽  
Vol 34 (4) ◽  
pp. 494-515 ◽  
Author(s):  
Emily J. Rayfield ◽  
Angela C. Milner

The aim of this analysis was to establish the basic mechanical principles of simple archosaur cranial form. In particular we estimated the influence of two key archosaur innovations, the secondary palate and the antorbital fenestra, on the optimal resistance of biting-induced loads. Although such simplified models cannot substitute for more complex cranial geometries, they can act as a clearly derived benchmark that can serve as a reference point for future studies incorporating more complex geometry. We created finite element (FE) models comprising either a tall, domed (oreinirostral) snout or a broad, flat (platyrostral) archosaur snout. Peak von Mises stress was recorded in models with and without a secondary palate and/or antorbital fenestra after the application of bite loads to the tooth row. We examined bilateral bending and unilateral torsion-inducing bites for a series of bite positions along the jaw, and conducted a sensitivity analysis of material properties. Pairwise comparison between different FE morphotypes revealed that oreinirostral models are stronger than their platyrostral counterparts. Oreinirostral models are also stronger in bending than in torsion, whereas platyrostral models are equally susceptible to either load type. As expected, we found that models with a fenestra always have greatest peak stresses and by inference are “weaker,” significantly so in oreinirostral forms and anterior biting platyrostral forms. Surprisingly, although adding a palate always lowers peak stress, this is rarely by large magnitudes and is not significant in bilateral bending bites. The palate is more important in unilateral torsion-inducing biting. Two basic principles of archosaur cranial construction can be derived from these simple models: (1) forms with a fenestra are suboptimally constructed with respect to biting, and (2) the presence or absence of a palate is significant to cranial integrity in unilaterally biting animals. Extrapolating these results to archosaur cranial evolution, it appears that if mechanical optimization were the only criterion on which skull form is based, then most archosaurs could in theory strengthen their skulls to increase resistance to biting forces. These strengthened morphotypes are generally not observed in the fossil record, however, and therefore archosaurs appear subject to various non-mechanical morphological constraints. Carnivorous theropod dinosaurs, for example, may retain large suboptimal fenestra despite generating large bite forces, owing to an interplay between craniofacial ossification and pneumatization. Furthermore, living crocodylians appear to strengthen their skull with a palate and filled fenestral opening in the most efficient way possible, despite being constrained perhaps by hydrodynamic factors to the weaker platyrostral morphotype. The future challenge is to ascertain whether these simple predictions are maintained when the biomechanics of complex cranial geometries are explored in more detail.

Author(s):  
Joseph Calogero ◽  
Mary Frecker ◽  
Aimy Wissa ◽  
James E. Hubbard

The overall goal of this research is to develop design optimization methodologies for compliant mechanisms that will provide passive shape change. Our previous work has focused on designing two separate contact-aided compliant elements (CCE): one for bend-and-sweep deflections, called the bend-and-sweep compliant element (BSCE), and another for twist deflection, called the twist compliant element (TCE). In the current paper, all three degrees of freedom, namely bending, twist, and sweep, are achieved simultaneously using a single passive contact-aided compliant mechanism. A new objective function for a contact-aided compliant mechanism is introduced and the results of the optimization procedure are presented. A bend-twist-and-sweep compliant element (BTSCE) can be inserted into the leading edge spar of an ornithopter, which is an avian-scale flapping wing un-manned air vehicle. The multiple objective functions of the optimization problem presented in this paper are: for upstroke, maximize tip bending and sweep deflections, maximize twist angle, and minimize the mass and peak von Mises stress in the BTSCE, and for downstroke, minimize tip bending and sweep deflections, minimize twist angle, and minimize the mass and peak von Mises stress in the BTSCE. This allows a designer to select a CCE from a set of optimal designs to accomplish all three displacement goals. The BTSCE was modeled using a commercial finite element program and optimized using NSGA-II, a genetic algorithm. The results for a single angled compliant joint (ACJ) for quasi-static upstroke loading conditions are presented. Two optimal designs are discussed and compared, one with a moderate peak stress and moderate deflections, the other with a high peak stress and large deflections. The optimization results are then compared to the previous results for the two independent CCEs. A design study showed that the angle of the ACJ needs to be obtuse to achieve a positive twist angle during upstroke, and an acute contact angle reduces peak stress. The deflection objective functions were relatively insensitive to eccentricity for upstroke and downstroke compared to the other parameters, and a high stress penalty was paid for any gains in deflection. The downstroke objective functions were relatively insensitive to all parameters compared to the upstroke objective functions, and were much smaller in magnitude. The optimization showed that under simplified upstroke loading conditions, the BTSCE with a single ACJ allowed bending deflection near 30% of the length of the BTSCE, twist angle near 0.14 radians, and sweep deflection near 5% of the length of the BTSCE.


2005 ◽  
Vol 293-294 ◽  
pp. 769-776 ◽  
Author(s):  
C.T. McCarthy ◽  
M. Hussey ◽  
Michael D. Gilchrist

This paper presents an investigation into the sharpness of a surgical scalpel blade. An experiment was carried out in which a surgical scalpel blade was pushed through an elastomeric substrate at a constant velocity. The force-displacement characteristics were examined by plotting the stiffness as a function of blade displacement and it was found that this curve could clearly identify the point where the material separates to form a cut. A blade sharpness measurement was defined as the energy required to initiate an opening or cut in the substrate. A finite element model was developed to examine the stress state in the substrate at the point where the opening initiates. The development of this model is described. The model was validated against the experiment and close agreement was obtained. The von-Mises stress distribution under the blade tip was plotted and it was shown that the peak stress actually occurs away from the blade tip, suggesting that material separation would initiate away from the substrate surface.


Author(s):  
Johanna Ehlers ◽  
Henning Ressing ◽  
Wulf-Christof von Karstedt ◽  
Daniel Rixen ◽  
Mohamed S. Gadala

The turbine blade is one of the most critical components of a steam turbine. The high thermal loads and large centrifugal forces cause extreme stresses on the blade, especially on its root. This paper focuses on improving the double-T root of a turbine blade of the control stage by decreasing the root’s peak equivalent von-Mises stress. An 18% reduction was achieved in the peak stress by changing the convexity of the contact surface between the root and the groove. The equivalent von-Mises stress was determined in a static structural analysis of a three dimensional finite element model (3D FEM-model) using ANSYS Workbench. This numerical model was developed to include one blade and the associated part of the shaft, whereas the complete circle of blades was considered by applying cyclic symmetry. Furthermore, this paper includes a modal analysis comparing the natural frequencies of the initial FEM-model with the frequencies of the optimized one. The results were established by an investigation of the influence of the FEM-model’s parameters, its material properties, thermal effects, and an additional damping wire in the shroud.


Author(s):  
Olaf H. F. Diener ◽  
Sybrand J. van der Spuy ◽  
Theodor W. von Backström ◽  
Thomas Hildebrandt

In this paper the procedure and results of the aeromechanical optimization of a mixed-flow compressor impeller to be used in a 600 N micro gas turbine (MGT) are presented. Today’s unmanned aerial vehicles (UAVs) demand high thrust-to-weight ratios and low engine frontal area. This may be achieved using mixed-flow compressors. The initial impeller design was obtained using a 1-D turbomachinery layout tool. A multi-point optimization of the impeller aerodynamic performance was completed, followed by a mechanical optimization to reduce mechanical stresses in the impeller. A coupled aero-mechanical optimization was concluded with the purpose of increasing the choke limit and reducing stresses while conserving aero-performance. Subsequently, a modal analysis of the rotor was conducted to determine its vibrational characteristics. The optimization process was set up and controlled in an integrated environment that includes a 3-D Navier-Stokes flow solver and a 3-D finite element (FE) structural solver. The optimization process is based on the use of a database, an artificial neural network (ANN), a user-defined objective function and a genetic algorithm (GA). The overall optimization process achieved an increase in pressure ratio (total-to-total) of 30.6% compared to the initial design while the efficiency (isentropic total-to-total) was increased by 5% at design conditions. A decrease in the surge margin was experienced, but the final surge margin was still acceptable (12%). The choke limit was increased meaningfully. This was achieved while also decreasing the peak von Mises stress from far above the material yield strength to 30% below the yield limit.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 757
Author(s):  
Tianyi Su ◽  
Wenqing Zhang ◽  
Zhijun Zhang ◽  
Xiaowei Wang ◽  
Shiwei Zhang

A 2D axi-symmetric theoretical model of dielectric porous media in intermittent microwave (IMW) thermal process was developed, and the electromagnetic energy, multiphase transport, phase change, large deformation, and glass transition were taken into consideration. From the simulation results, the mass was mainly carried by the liquid water, and the heat was mainly carried by liquid water and solid. The diffusion was the dominant mechanism of the mass transport during the whole process, whereas for the heat transport, the convection dominated the heat transport near the surface areas during the heating stage. The von Mises stress reached local maxima at different locations at different stages, and all were lower than the fracture stress. A material treated by a longer intermittent cycle length with the same pulse ratio (PR) tended to trigger the phenomena of overheat and fracture due to the more intense fluctuation of moisture content, temperature, deformation, and von Mises stress. The model can be extended to simulate the intermittent radio frequency (IRF) process on the basis of which one can select a suitable energy source for a specific process.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Sign in / Sign up

Export Citation Format

Share Document