Diversity and species abundance patterns of the Early Cambrian (Series 2, Stage 3) Chengjiang Biota from China

Paleobiology ◽  
10.1666/12056 ◽  
2014 ◽  
Vol 40 (1) ◽  
pp. 50-69 ◽  
Author(s):  
Fangchen Zhao ◽  
Jean-Bernard Caron ◽  
David J. Bottjer ◽  
Shixue Hu ◽  
Zongjun Yin ◽  
...  

Lagerstättenfrom the Precambrian–Cambrian transition have traditionally been a relatively untapped resource for understanding the paleoecology of the “Cambrian explosion.” This quantitative paleoecological study is based on 10,238 fossil specimens belonging to 100 animal species, 11 phyla, and 15 ecological categories from the lower Cambrian (Series 2, Stage 3) Chengjiang biota (Mafang locality near Haikou, Yunnan Province, China). Fossils were systematically collected within a 2.5-meter-thick sequence divided into ten stratigraphic intervals. Each interval represents an induced time-averaged assemblage of various event (obrution) beds of unknown duration. Overall, the different fossil assemblages are taxonomically and ecologically similar, suggesting the presence of a single community type recurring throughout the Mafang section. The Mafang community is dominated by epibenthic vagile hunters or scavengers, sessile suspension feeders, and infaunal vagile hunters or scavengers represented primarily by arthropods, brachiopods, and priapulids, respectively. Most species have low abundance and low occurrence frequencies, whereas a few species are numerically abundant and occur frequently. Overall, in structure and ecology the Mafang community is comparable to the Middle Cambrian (Series 3, Stage 5) Burgess Shale biota (Walcott Quarry, Yoho National Park, British Columbia, Canada). This suggests that, despite variations in species identity within taxonomic and ecological groups, the structure and ecology of Cambrian Burgess Shale-type communities remained relatively stable until at least the Middle Cambrian (Series 3, Stage 5) in subtidal to relatively deep-water offshore settings in siliciclastic soft-substrate environments.

2004 ◽  
Vol 78 (6) ◽  
pp. 1138-1145 ◽  
Author(s):  
Jean-Bernard Caron ◽  
David M. Rudkin ◽  
Stuart Milliken

The discovery of a new naraoiid nektaspid in the Upper Silurian (Pridolian) of southeastern Ontario significantly extends the range of this unusual group. Nektaspids are nonmineralized arthropods typical of Early and Middle Cambrian soft-bottom communities, but were thought to have become extinct in the Late Ordovician. The unique holotype specimen of Naraoia bertiensis n. sp. comes from a Konservat–Lagerstätte deposit renowned for its eurypterid fauna (the Williamsville Member of the Bertie Formation). Naraoia bertiensis lacks thoracic segments and is morphologically similar to Naraoia compacta from the Middle Cambrian Burgess Shale, save for the presence of a long ventral cephalic doublure and a subtly pointed posterior shield. To examine the phylogenetic relationships of the new naraoiid, we coded characters of the holotype specimen and of nine previously described nektaspids. The results confirm a sister taxon relationship between Naraoia compacta and Naraoia bertiensis and the monophyly of nektaspid forms lacking thoracic segments (family Naraoiidae). This latter group may have arisen from an ancestral segment-bearing form through heterochronic loss of thoracic segments early in the Cambrian. The disjunct occurrence of a naraoiid nektaspid in the Late Silurian resembles the reappearance of other “Lazarus taxa” that were thought to have been eliminated during mass extinction events. The naraoiid lineage survived the Late Ordovician biotic crisis, but in this case the “Lazarus effect” seems likely to be taphonomic in origin.


2017 ◽  
Vol 65 (4) ◽  
pp. 1540 ◽  
Author(s):  
Mateo Donald Ruiz Bruce Taylor ◽  
José Luis Rangel Salazar ◽  
Paula Enríquez ◽  
Jorge L. León-Cortés ◽  
Carlos García-Estrada

Neotropical wetlands comprise contrasting habitats with highly diverse avifauna, including herbivores, insectivores and carnivores, of both terrestrial and aquatic species. Therefore, comparisons between wetland bird assemblages based only on species identity may disregard turnover within ecological groups, and eclipse important variations between habitat types. We studied bird assemblages from mangrove and estuary habitat types from a coastal lagoon system in Oaxaca, Mexico. For this, we used 640 point counts to obtain data on bird species using those habitats between October 2009 and May 2012. We ascertained guild structure by classifying 139 species in a scalar hierarchy of two-levels: 17 key-resource guilds nested within seven trophic guilds. To evaluate variation in guild structure between habitat types, we contrasted richness and diversity across trophic guilds and tested for variation in abundance within key-resource guilds. We exposed a tendency of greater diversity within terrestrial guilds in mangrove and within aquatic guilds at the estuary. However, these differences were compensatory and neither richness nor diversity varied between habitat types in comparisons across the sets of trophic guilds. Parallel analyses at two hierarchical levels supported the theoretical prediction of greater change at lower levels. Herpetofauna, wood invertebrates, aquatic invertebrates and seeds emerged as dietary components that may explain the distribution of abundance in key-resource guilds. Although the guilds from mangrove and estuary produced comparable sets of richness and diversity values, the actual identity of guilds with high values varied between habitats. On the other hand, species abundance comparisons within guilds pinpointed specific associations with habitat types and this method represents a suitable strategy for identifying habitat preferences in complex wetland bird assemblages.


2019 ◽  
Author(s):  
Jason Bertram ◽  
Erica A Newman ◽  
Roderick Dewar

Aim: Maximum entropy (MaxEnt) models promise a novel approach for understanding community assembly and species abundance patterns. One of these models, the "Maximum Entropy Theory of Ecology" (METE) reproduces many observed species abundance patterns, but is based on an aggregated representation of community structure that does not resolve species identity or explicitly represent species-specific functional traits. In this paper, METE is compared to "Very Entropic Growth" (VEG), a MaxEnt model with a less aggregated representation of community structure that represents species (more correctly, functional types) in terms of their per capita metabolic rates. We examine the contribution of metabolic traits to the patterns of community assembly predicted by VEG and, through aggregation, compare the results with METE predictions in order to gain insight into the biological factors underlying observed patterns of community assembly. Innovation: We formally compare two MaxEnt-based community models, METE and VEG, that differ as to whether or not they represent species-specific functional traits. We empirically test and compare the metabolic predictions of both models, thereby elucidating the role of metabolic traits in patterns of community assembly. Main Conclusions: Our analysis reveals that a key determinant of community metabolic patterns is the "density of species" distribution, defined as the intrinsic number of species with metabolic rates in a given range that are available to a community prior to filtering by environmental constraints. Our analysis suggests that appropriate choice of of the density of species in VEG may lead to more realistic predictions than METE, for which this distribution is not defined, and thus opens up new ways to understanding the link between functional traits and patterns of community assembly.


2014 ◽  
Vol 20 ◽  
pp. 123-146 ◽  
Author(s):  
Robert R. Gaines

Burgess Shale-type fossil assemblages provide a unique record of animal life in the immediate aftermath of the so-called “Cambrian explosion.” While most soft-bodied faunas in the rock record were conserved by mineral replication of soft tissues, Burgess Shale-type preservation involved the conservation of whole assemblages of soft-bodied animals as primary carbonaceous remains, often preserved in extraordinary anatomical detail. Burgess Shale-type preservation resulted from a combination of influences operating at both local and global scales that acted to drastically slow microbial degradation in the early burial environment, resulting in incomplete decomposition and the conservation of soft-bodied animals, many of which are otherwise unknown from the fossil record. While Burgess Shale-type fossil assemblages are primarily restricted to early and middle Cambrian strata (Series 2–3), their anomalous preservation is a pervasive phenomenon that occurs widely in mudstone successions deposited on multiple paleocontinents. Herein, circumstances that led to the preservation of Burgess Shale-type fossils in Cambrian strata worldwide are reviewed. A three-tiered rank classification of the more than 50 Burgess Shale-type deposits now known is proposed and is used to consider the hierarchy of controls that regulated the operation of Burgess Shale-type preservation in space and time, ultimately determining the total number of preserved taxa and the fidelity of preservation in each deposit. While Burgess Shale-type preservation is a unique taphonomic mode that ultimately was regulated by the influence of global seawater chemistry upon the early diagenetic environment, physical depositional (biostratinomic) controls are shown to have been critical in determining the total number of taxa preserved in fossil assemblages, and hence, in regulating many of the important differences among Burgess Shale-type deposits.


2002 ◽  
Vol 76 (6) ◽  
pp. 1106-1108 ◽  
Author(s):  
Xingliang Zhang ◽  
Yuanlong Zhao ◽  
Ruidong Yang ◽  
Degan Shu

The Early Cambrian Chengjiang Lagerstätte, Yunnan Province, Southwest China, has become one of the most celebrated Cambrian fossil Lagerstatten not only for perhaps the earliest biota of soft-bodied organisms in the Phanerozoic (Yuan and Zhao, 1999; Zhang et aI., 2001; but see Budd and Jensen, 2000), but also for a number of significant discoveries (Shu et al., 1996a, 1996b, 1999a, 1999b, 2001), proven to be of particular importance for our understanding the Cambrian explosion. Also in Southwest China, Guizhou Province, there is a very significant, although less acclaimed, Middle Cambrian soft-bodied fauna as well, namely the Kaili fauna, which occurs in the Kaili Formation in Kaili area (Kuizhou). The age of the Kaili Formation ranges from late Early to early Middle Cambrian. Regionally, the Kaili Formation is about 222 m thick and consists of three parts. The lowermost part (late Early Cambrian, about 55 m thick) is dominated by thin, calcareous siltstone strata interbedded with limestone layers at the base. The middle part (early Middle Cambrian, ca. 123 m) consists of dark green mudstone and shale, while the uppermost part (ca. 44 m) is composed of interbedded limestone and silty shale. The Kaili fauna is derived from mudstones in the middle part of the formation (Zhao et aI., 1994; Zhu et aI., 2000).


2015 ◽  
Vol 370 (1666) ◽  
pp. 20140313 ◽  
Author(s):  
Derek E. G. Briggs

Harry Whittington's 1975 monograph on Opabinia was the first to highlight how some of the Burgess Shale animals differ markedly from those that populate today's oceans. Categorized by Stephen J. Gould as a ‘weird wonder’ ( Wonderful life , 1989) Opabinia , together with other unusual Burgess Shale fossils, stimulated ongoing debates about the early evolution of the major animal groups and the nature of the Cambrian explosion. The subsequent discovery of a number of other exceptionally preserved fossil faunas of Cambrian and early Ordovician age has significantly augmented the information available on this critical interval in the history of life. Although Opabinia initially defied assignment to any group of modern animals, it is now interpreted as lying below anomalocaridids on the stem leading to the living arthropods. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society .


Paleobiology ◽  
10.1666/12029 ◽  
2013 ◽  
Vol 39 (2) ◽  
pp. 297-321 ◽  
Author(s):  
Martin R. Smith

Nectocaridids are soft-bodied early to middle Cambrian organisms known from Burgess Shale-type deposits in Canada, China, and Australia. Originally described as unrelated species, they have recently been interpreted as a clade; their flexible tentacles, camera-type eyes, lateral fins, internal gills, axial cavity, and funnel point to a relationship with the cephalopods. However, aspects of this reinterpretation, including the relevance of the group to cephalopod evolution, have been called into question.Here, I examine new and existing nectocaridid material, including a large new form that may represent a sexual dimorph of Nectocaris pteryx. Differences between existing taxa largely represent taphonomic variation between sites and specimens—which provides further constraint on the organisms' anatomy. I revise the morphology of the tentacles and fins, and describe mouthparts and phosphatized gills for the first time. A mathematical analysis supports the presence of the earliest known camera-type eyes, and fluid mechanical considerations suggest that the funnel is optimized for efficient jet propulsion in a low Reynolds number flow regime.Nectocaridids closely resemble coleoid cephalopods, but a position deeper within Cephalopoda raises fewer stratigraphic challenges. Whether its coleoid-like construction reflects common ancestry or profound convergence, the Nectocaris body plan adds substantially to Cambrian disparity, demonstrating the rapid colonization of nektobenthic niches after the Cambrian explosion.


2021 ◽  
pp. jgs2020-162
Author(s):  
Fan Wei ◽  
Yang Zhao ◽  
Ailin Chen ◽  
Xianguang Hou ◽  
Peiyun Cong

Aspiculate demosponges are rarely described in geological history on account of the absence of spicules that are stable and resistant to degradation. One exception is the exquisite preservation of sponges without any mineralised skeletons discovered in Lagerstätten (e.g. the Burgess Shale). The Chengjiang Biota, an early example of a Burgess Shale-type Biota in South China (Cambrian Series 2, Stage 3), is one of the only examples of convincing aspiculate sponges until now. Here, we describe Vauxia pregracilenta sp. nov. and V. paraleioia sp. nov., as well as two poorly preserved vauxiid specimens (Vauxia sp.) in open nomenclature, from the Chengjiang Biota. V. pregracilenta has a fan-like holdfast and branches in various sizes, as well as a typical two-layered net-like skeleton, without spicules. The endosomal layer is hexagonal, while the dermal layer is sub-rectangular. V. paraleioia is characterised by a two-layered subconical skeleton, with the dermal layer ornamented with vertical surface grooves. The openings of the dermal and endosomal layers of V. paraleioia are both hexagonal but of different sizes. These newly discovered Vauxia species indicate that the aspiculate sponges were diversified in the early Cambrian period. Partial silicification of the fibres of aspiculate Vauxia are confirmed from the Chengjiang Biota.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosion


2013 ◽  
Vol 280 (1767) ◽  
pp. 20131613 ◽  
Author(s):  
Jean-Bernard Caron ◽  
Martin R. Smith ◽  
Thomas H. P. Harvey

Burgess Shale-type deposits are renowned for their exquisite preservation of soft-bodied organisms, representing a range of animal body plans that evolved during the Cambrian ‘explosion’. However, the rarity of these fossil deposits makes it difficult to reconstruct the broader-scale distributions of their constituent organisms. By contrast, microscopic skeletal elements represent an extensive chronicle of early animal evolution—but are difficult to interpret in the absence of corresponding whole-body fossils. Here, we provide new observations on the dorsal spines of the Cambrian lobopodian (panarthropod) worm Hallucigenia sparsa from the Burgess Shale (Cambrian Series 3, Stage 5). These exhibit a distinctive scaly microstructure and layered (cone-in-cone) construction that together identify a hitherto enigmatic suite of carbonaceous and phosphatic Cambrian microfossils—including material attributed to Mongolitubulus , Rushtonites and Rhombocorniculum —as spines of Hallucigenia -type lobopodians. Hallucigeniids are thus revealed as an important and widespread component of disparate Cambrian communities from late in the Terreneuvian (Cambrian Stage 2) through the ‘middle’ Cambrian (Series 3); their apparent decline in the latest Cambrian may be partly taphonomic. The cone-in-cone construction of hallucigeniid sclerites is shared with the sclerotized cuticular structures (jaws and claws) in modern onychophorans. More generally, our results emphasize the reciprocal importance and complementary roles of Burgess Shale-type fossils and isolated microfossils in documenting early animal evolution.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Javier Ortega-Hernández ◽  
Abdelfattah Azizi ◽  
Thomas W. Hearing ◽  
Thomas H. P. Harvey ◽  
Gregory D. Edgecombe ◽  
...  

Abstract Xandarellida is a well-defined clade of Lower Palaeozoic non-biomineralized artiopodans that is exclusively known from the early Cambrian (Stage 3) Chengjiang biota of South China. Here we describe a new member of this group, Xandarella mauretanica sp. nov., from the middle Cambrian (Stage 5) Tatelt Formation of Morocco, making this the first non-trilobite Cambrian euarthropod known from North Africa. X. mauretanica sp. nov. represents the youngest occurrence of Xandarellida – extending its stratigraphic range by approximately 10 million years – and expands the palaeobiogeographic distribution of the group to the high southern palaeolatitudes of West Gondwana. The new species provides insights into the lightly sclerotized ventral anatomy of Xandarellida, and offers stratigraphically older evidence for a palaeobiogeographic connection between Burgess Shale-type euarthropod communities in North Africa and South China, relative to the (Tremadocian) Fezouata biota.


Sign in / Sign up

Export Citation Format

Share Document