scholarly journals The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms

2003 ◽  
Vol 31 (3) ◽  
pp. 359-372 ◽  
Author(s):  
L Gendron ◽  
MD Payet ◽  
N Gallo-Payet

The angiotensin II (Ang II) type 2 receptor (AT(2)) is a member of the seven-transmembrane domain, G-protein coupled receptor family. This receptor is ubiquitously distributed in the fetus but, in most tIssues, its expression dramatically falls in the first few hours after birth. Based on this observation, the hypothesis that this receptor could be involved in fetal development was raised and, over the past ten Years, many studies have tried to identify a role for the AT(2) receptor using many different tIssues and cell lines. To date, one of the major roles associated with the Ang II AT(2) receptor concerns its ability to induce neuronal differentiation. Indeed, in cells of neuronal origin, activation of the AT(2) receptor was shown to induce neurite outgrowth and elongation, modulate neuronal excitability, promote cellular migration and, in particular conditions, induce neuronal cell death. Regarding its signaling mechanisms, the AT(2) receptor still represents one of the most controversial G-protein coupled receptors since it does not stimulate the production of any of the classical second messengers. This review summarizes knowledge of the functions and the signaling mechanisms involved in the actions of the AT(2) receptor in neurons and cells of neuronal origin. Based on its altered expression in neurological disorders, a role for the AT(2) receptor in control of neuronal plasticity is proposed.

2004 ◽  
Vol 124 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Steven A. Moore ◽  
Nancy Huang ◽  
Olivia Hinthong ◽  
Robert D. Andres ◽  
Tom N. Grammatopoulos ◽  
...  

2021 ◽  
Vol 35 ◽  
pp. 116071
Author(s):  
Suresh Pola ◽  
Shailesh R. Shah ◽  
Harikishore Pingali ◽  
Pandurang Zaware ◽  
Baban Thube ◽  
...  

Endocrinology ◽  
2000 ◽  
Vol 141 (11) ◽  
pp. 4081-4090 ◽  
Author(s):  
Shinya Nishi ◽  
Sheau Yu Hsu ◽  
Karen Zell ◽  
Aaron J. W. Hsueh

Abstract The receptors for lutropin (LH), FSH, and TSH belong to the large G protein-coupled receptor (GPCR) superfamily and are unique in having a large N-terminal extracellular (ecto-) domain important for interactions with the large glycoprotein hormone ligands. Recent studies indicated the evolution of a large family of the leucine-rich repeat-containing, G protein-coupled receptors (LGRs) with at least seven members in mammals. Based on the sequences of mammalian glycoprotein hormone receptors, we have identified a new LGR in Drosophila melanogaster and named it as fly LGR2 to distinguish it from the previously reported fly LH/FSH/TSH receptor (renamed as fly LGR1). Genomic analysis indicated the presence of 10 exons in fly LGR2 as compared with 16 exons in fly LGR1. The deduced fly LGR2 complementary DNA (cDNA) showed 43 and 64% similarity to the fly LGR1 in the ectodomain and transmembrane region, respectively. Comparison of 12 LGRs from diverse species indicated that these proteins can be divided into three subfamilies and fly LGR1 and LGR2 belong to different subfamilies. Potential signaling mechanisms were tested in human 293T cells overexpressing the fly receptors. Of interest, fly LGR1, but not LGR2, showed constitutive activity as reflected by elevated basal cAMP production in transfected cells. The basal activity of fly LGR1 was further augmented following point mutations of key residues in the intracellular loop 3 or transmembrane VI, similar to those found in patients with familial male precocious puberty. The present study reports the cloning of fly LGR2 and indicates that the G protein-coupling mechanism is conserved in fly LGR1 as compared with the mammalian glycoprotein hormone receptors. The characterization of fly receptors with features similar to mammalian glycoprotein hormone receptors allows a better understanding of the evolution of this unique group of GPCRs and future elucidation of their ligand signaling mechanisms.


2018 ◽  
Vol 9 (5) ◽  
pp. 457-461 ◽  
Author(s):  
Santhosh F. Neelamkavil ◽  
Andrew W. Stamford ◽  
Timothy Kowalski ◽  
Dipshikha Biswas ◽  
Craig Boyle ◽  
...  

1995 ◽  
Vol 268 (6) ◽  
pp. R1401-R1405 ◽  
Author(s):  
M. el Ghissassi ◽  
S. N. Thornton ◽  
S. Nicolaidis

The angiotensin receptor specificity, with respect to fluid intake, of the organum cavum prelamina terminalis (OCPLT), a recently discovered discrete forebrain structure with high sensitivity to angiotensin II (ANG II), was investigated. ANG II (10 ng) microinjected into the OCPLT significantly increased water consumption but did not induce intake of a hypertonic (3%) NaCl solution. Losartan, an ANG II type 1 (AT1) receptor-specific antagonist, produced dose-related (1-100 ng) inhibition of ANG II-induced drinking. The ANG II type 2 receptor-specific antagonist CGP-42112A was ineffective. Intake of the 3% NaCl solution in response to microinjection of either of the antagonists into the OCPLT was never observed. These findings suggest that water intake produced by microinjection of ANG II into the OCPLT is mediated by AT1 receptors uniquely and that, in contrast to other regions of the brain, these receptors do not induce salt intake when stimulated by ANG II.


2015 ◽  
Vol 129 (6) ◽  
pp. 505-513 ◽  
Author(s):  
Mark Del Borgo ◽  
Yan Wang ◽  
Sanja Bosnyak ◽  
Morimer Khan ◽  
Pia Walters ◽  
...  

We have synthesized a highly selective compound that is able to target a protein-binding site [called angiotensin (Ang) II type 2 receptor, AT2R] in the cardiovascular system. This research tool will enhance our ability to stimulate AT2R to produce protective effects against cardiovascular disease.


2018 ◽  
Vol 10 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Hirotaka Watada ◽  
Masanari Shiramoto ◽  
Shin Irie ◽  
Yasuo Terauchi ◽  
Yuichiro Yamada ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Ellen E Gillis ◽  
Jennifer C Sullivan

There is increasing evidence supporting a critical role of the immune system in the development of hypertension. Our lab has previously reported sex differences in the renal T cell profile in both Spontaneously Hypertensive Rats (SHR) and Angiotensin II (Ang II) models of hypertension, with females having more anti-inflammatory regulatory T cells (Tregs) than males. Ang II has a well-defined role in the activation of pro-inflammatory T cells in hypertension via the angiotensin type-1 receptor (AT1R). Less is known about the role of the angiotensin type-2 receptor (AT2R) in the regulation of immune cells, although the AT2R has been shown to be cardioprotective and AT2R expression is greater in females than males. Based on the potential anti-hypertensive role of AT2Rs, we hypothesized that administration of an AT2R agonist, Compound 21 (C21), would increase renal Tregs, and this increase would be greater in females due to greater AT2R expression. Male and female SHR (10 weeks of age, n=3-4) were implanted with telemetry units for continuous monitoring of mean arterial pressure (MAP). Following 10 days of recovery, baseline MAP was recorded for 5 days. Rats were then divided into the following treatment groups: surgical controls, low dose C21 (150 ng/kg/min, sc by osmotic minipump), high dose C21 (300 ng/kg/min, sc by osmotic minipump). Kidneys were harvested after 2 weeks of treatment and flow cytometry was performed on whole kidney homogenates. MAP was not altered by C21 treatment in males (137±4 vs 134±4 vs 134±4 mmHg; n.s.) or females (128±2 vs 136±5 vs 134±4 mmHg; n.s.). Interestingly, despite having no effect on MAP, there was a significant decrease in renal CD3 + CD4 + FoxP3 + Tregs in females following both low and high doses of C21 (data expressed as % CD3 + CD4 + cells: 6±0.6 vs 3±0.6 vs 3.5±1.3 %, respectively; p=0.02). Tregs decrease in males following the high dose of C21 only (data expressed as % CD3 + CD4 + cells: 3.3±0.3 vs 3.3±0.5 vs 1.7±0.7 %, respectively; p=0.05). Total CD3 + T cells, CD3 + CD4 + T cells, and Th17 cells were not altered by C21 treatment. In conclusion, AT2R activation suppresses renal Tregs, and females are more sensitive than males. These data suggest a novel role for AT2R regulation in the kidney in hypertension.


Sign in / Sign up

Export Citation Format

Share Document