Effects of 4,4′-di-isothiocyano-2,2′-stilbene disulphonate on iodide uptake by primary cultures of turtle thyroid follicular cells

1987 ◽  
Vol 113 (3) ◽  
pp. 403-412 ◽  
Author(s):  
S. Y. Chow ◽  
Y. C. Yen-Chow ◽  
H. S. White ◽  
D. M. Woodbury

ABSTRACT Iodide uptake by primary cultures of turtle thyroid follicular cells is directly proportional to the Na + concentration and is inversely proportional to the HCO3− concentration in culture medium, but is not affected by the Cl− concentration. Addition of 4,4′-di-isothiocyano-2,2′-stilbene disulphonate (DIDS; 10 μmol/l and higher doses) to medium containing different concentrations of Na+ (5–140 mmol/l), HCO3− (0–40 mmol/l) and Cl − (120 mmol/l) generally enhanced iodide uptake by the cultured cells; however, there was no significant effect in Na+-free and in low Cl− (90 mmol/l and less) medium. The inhibitory effects on iodide uptake of ouabain, frusemide and perchlorate were attenuated by DIDS which also antagonized the stimulatory effects on iodide uptake of TSH, although both DIDS and TSH increased the 125I− cell/medium ratio when they were given alone. At doses of 100 μmol/l and higher, DIDS lowered the intracellular pH of cultured cells when the pH of the medium was maintained at a constant level. It also increased the intracellular Cl − concentration, but had no effect on intracellular Na+ or K +. The input and specific resistances of cell membranes in cultured thyroid cells and in isolated thyroid slices increased (decreased conductance) after adding DIDS to the perfusion fluids. Both Na+/K+- and HCO3−-ATPase activities in homogenates of turtle thyroid tissue were inhibited by DIDS. Results from this investigation demonstrate (1) that in addition to preventing the leak of iodide from thyroid cells, DIDS may act to increase the sensitivity of the Na + -anion carrier to I− and thereby increases iodide uptake, and (2) that a HCO3−–Cl− exchange system is present in the thyroid cell membrane and appears to be linked to the transport of iodide into thyroid cells. J. Endocr. (1987) 113, 403–412

Author(s):  
M. Rotondi ◽  
F. Coperchini ◽  
G. Ricci ◽  
M. Denegri ◽  
L. Croce ◽  
...  

Abstract Purpose SARS-COV-2 is a pathogenic agent belonging to the coronavirus family, responsible for the current global world pandemic. Angiotensin-converting enzyme 2 (ACE-2) is the receptor for cellular entry of SARS-CoV-2. ACE-2 is a type I transmembrane metallo-carboxypeptidase involved in the Renin-Angiotensin pathway. By analyzing two independent databases, ACE-2 was identified in several human tissues including the thyroid. Although some cases of COVID-19-related subacute thyroiditis were recently described, direct proof for the expression of the ACE-2 mRNA in thyroid cells is still lacking. Aim of the present study was to investigate by RT-PCR whether the mRNA encoding for ACE-2 is present in human thyroid cells. Methods RT-PCR was performed on in vitro ex vivo study on thyroid tissue samples (15 patients undergoing thyroidectomy for benign thyroid nodules) and primary thyroid cell cultures. Results The ACE-2 mRNA was detected in all surgical thyroid tissue samples (n = 15). Compared with two reporter genes (GAPDH: 0.052 ± 0.0026 Cycles−1; β-actin: 0.044 ± 0.0025 Cycles−1; ACE-2: 0.035 ± 0.0024 Cycles−1), the mean level of transcript expression for ACE-2 mRNA was abundant. The expression of ACE-2 mRNA in follicular cells was confirmed by analyzing primary cultures of thyroid cells, which expressed the ACE-2 mRNA at levels similar to tissues. Conclusions The results of the present study demonstrate that the mRNA encoding for the ACE-2 receptor is expressed in thyroid follicular cells, making them a potential target for SARS-COV-2 entry. Future clinical studies in patients with COVID-19 will be required for increase our understanding of the thyroid repercussions of SARS-CoV-2 infection.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5861
Author(s):  
Márcia Faria ◽  
Rita Domingues ◽  
Maria João Bugalho ◽  
Paulo Matos ◽  
Ana Luísa Silva

The Sodium/Iodide Symporter (NIS) is responsible for the active transport of iodide into thyroid follicular cells. Differentiated thyroid carcinomas (DTCs) usually preserve the functional expression of NIS, allowing the use of radioactive iodine (RAI) as the treatment of choice for metastatic disease. However, a significant proportion of patients with advanced forms of TC become refractory to RAI therapy and no effective therapeutic alternatives are available. Impaired iodide uptake is mainly caused by the defective functional expression of NIS, and this has been associated with several pathways linked to malignant transformation. MAPK signaling has emerged as one of the main pathways implicated in thyroid tumorigenesis, and its overactivation has been associated with the downregulation of NIS expression. Thus, several strategies have been developed to target the MAPK pathway attempting to increase iodide uptake in refractory DTC. However, MAPK inhibitors have had only partial success in restoring NIS expression and, in most cases, it remained insufficient to allow effective treatment with RAI. In a previous work, we have shown that the activity of the small GTPase RAC1 has a positive impact on TSH-induced NIS expression and iodide uptake in thyroid cells. RAC1 is a downstream effector of NRAS, but not of BRAF. Therefore, we hypothesized that the positive regulation induced by RAC1 on NIS could be a relevant signaling cue in the mechanism underlying the differential response to MEK inhibitors, observed between NRAS- and BRAF-mutant tumors. In the present study, we found that the recovery of NIS expression induced through MAPK pathway inhibition can be enhanced by potentiating RAC1 activity in thyroid cell systems. The negative impact on NIS expression induced by the MAPK-activating alterations, NRAS Q61R and BRAF V600E, was partially reversed by the presence of the MEK 1/2 inhibitors AZD6244 and CH5126766. Notably, the inhibition of RAC1 signaling partially blocked the positive impact of MEK inhibition on NIS expression in NRAS Q61R cells. Conversely, the presence of active RAC1 considerably improved the rescue of NIS expression in BRAF V600E thyroid cells treated with MEK inhibitors. Overall, our data support an important role for RAC1 signaling in enhancing MAPK inhibition in the context of RAI therapy in DTC, opening new opportunities for therapeutic intervention.


1994 ◽  
Vol 141 (2) ◽  
pp. 231-242 ◽  
Author(s):  
J F Wang ◽  
D J Hill ◽  
G P Becks

Abstract Isolated sheep thyroid follicles release insulin-like growth factors (IGF)-I and -II together with IGF-binding proteins (IGFBPs). We previously showed that TSH suppresses the biosynthesis and release of IGFBPs in vitro which may increase the tissue availability of IGFs, allowing a synergy with TSH which potentiates both thyroid growth and function. Many of the actions of TSH on thyroid cell function are dependent upon activation of adenylate cyclase, although increased synthesis of inositol trisphosphate and activation of protein kinase C (PKC) have also been implicated. We have now examined whether probable changes in intracellular cyclic adenosine monophosphate (cAMP) or PKC are involved in TSH-mediated suppression of IGFBP release. Confluent primary cultures of ovine thyroid cells were maintained in serum-free Ham's modified F-12M medium containing transferrin, somatostatin and glycyl-histidyl-lysine (designated 3H), and further supplemented with sodium iodide (10−8–10−3 mol/l), dibutyryl cAMP (0·25–1 mmol/l), forskolin (5–20 μmol/l) or 12-0-tetradecanoylphorbol-13-acetate (TPA; 10−11–10−6 mol/l), with or without exposure to TSH (200 μU/ml). The uptake and organification of Na [125I] by cells was examined after test incubations of up to 48 h, and IGFBPs in conditioned media were analysed by ligand blot using 125I-labelled IGF-II. The PKC activity in the cytosol and plasma membrane fractions of cells was measured by phosphorylation of histone using [γ-32P]ATP, and PKC immunoreactivity was visualized by Western immunoblot analysis. While dibutyryl cAMP or forskolin largely reproduced the stimulatory effect of TSH on iodine organification, they did not mimic the inhibitory effect of TSH on the secretion of IGFBPs of 43, 34, 28 and 19 kDa. Incubation with physiological or pharmacological concentrations of iodide (10−6–10−3 mol/l) for up to 48 h significantly decreased TSH action on iodide uptake and organification but did not alter the inhibitory action of TSH on IGFBP release. Incubation of cells with 10−11–10−6 mol TPA/l for 24 h inhibited the subsequent ability of TSH both to potentiate iodine organification and to suppress IGFBP release. In 3H medium, PKC activity was predominantly recovered from the membrane fraction but, following incubation for 48 h with TSH, the enzyme was no longer translocated to the membrane and was recovered predominantly from the cytosol. An 80 kDa species of immunoreactive PKC was recovered from the membranes of cells cultured in 3H medium, but its presence in membrane was decreased following incubation with TSH. The actions of TSH on intracellular PKC distribution were reversed by prior incubation with TPA, which itself stimulated the appearance of membrane PKC immunoreactivity. These results suggest that the ability of TSH to suppress IGFBP release does not depend primarily on cAMP stimulation, but may involve changes in the activation of PKC, possibly inhibition or down-regulation. Journal of Endocrinology (1994) 141, 231–242


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ana Paula Santin ◽  
Tania Weber Furlanetto

Thyroid diseases are more prevalent in women, particularly between puberty and menopause. It is wellknown that estrogen (E) has indirect effects on the thyroid economy. Direct effects of this steroid hormone on thyroid cells have been described more recently; so, the aim of the present paper was to review the evidences of these effects on thyroid function and growth regulation, and its mechanisms. The expression and ratios of the two E receptors,αandβ, that mediate the genomic effects of E on normal and abnormal thyroid tissue were also reviewed, as well as nongenomic, distinct molecular pathways. Several evidences support the hypothesis that E has a direct role in thyroid follicular cells; understanding its influence on the growth and function of the thyroid in normal and abnormal conditions can potentially provide new targets for the treatment of thyroid diseases.


Endocrinology ◽  
2004 ◽  
Vol 145 (3) ◽  
pp. 1464-1472 ◽  
Author(s):  
M. J. Costa ◽  
Y. Song ◽  
P. Macours ◽  
C. Massart ◽  
M. C. Many ◽  
...  

Abstract Partition of signaling molecules in sphingolipid-cholesterol-enriched membrane domains, among which are the caveolae, may contribute to signal transduction efficiency. In normal thyroid, nothing is known about a putative TSH/cAMP cascade compartmentation in caveolae or other sphingolipid-cholesterol-enriched membrane domains. In this study we show for the first time that caveolae are present in the apical membrane of dog and human thyrocytes: caveolin-1 mRNA presence is demonstrated by Northern blotting in primary cultures and that of the caveolin-1 protein by immunohistochemistry performed on human thyroid tissue. The TSH receptor located in the basal membrane can therefore not be located in caveolae. We demonstrate for the first time by biochemical methods the existence of sphingolipid-cholesterol-enriched domains in human and dog thyroid follicular cells that contain caveolin, flotillin-2, and the insulin receptor. We assessed a possible sphingolipid-cholesterol-enriched domains compartmentation of the TSH receptor and the α- subunit of the heterotrimeric Gs and Gq proteins using two approaches: Western blotting on detergent-resistant membranes isolated from thyrocytes in primary cultures and the influence of 10 mm methyl-β-cyclodextrin, a cholesterol chelator, on basal and stimulated cAMP accumulation in intact thyrocytes. The results from both types of experiments strongly suggest that the TSH/cAMP cascade in thyroid cells is not associated with sphingolipid-cholesterol-enriched membrane domains.


1996 ◽  
Vol 151 (2) ◽  
pp. 185-194 ◽  
Author(s):  
R Rossi ◽  
M C Zatelli ◽  
P Franceschetti ◽  
I Maestri ◽  
E Magri ◽  
...  

Abstract Sex steroid-binding activities have been identified by several authors in normal and pathological thyroids and the expression of the canonic androgen receptor (AR) has recently been demonstrated in human thyroid follicular cells. In order to assess what influence, if any, androgen exposure has on thyroid cell growth, the effect of dihydrotestosterone (DHT) on [3H]thymidine (thy) incorporation and cell proliferation was investigated in thyroid follicular cells in vitro. In a primary culture of goitrous cells, DHT induced a significant reduction of [3H]thy incorporation at concentrations ranging from 10−12 to 10−8 m, with a more pronounced effect at 10−9 m. At this concentration, the inhibitory effect was evident after both 24 and 48 h of treatment and in various types of primary thyroid cell cultures. In goitrous cells, the DHT-induced decrease of [3H]thy was associated with a reduction of expression of the proliferation-associated nuclear Ki-67 antigen, a protein commonly used to assess cell growth fraction. In TPC cells, an AR-positive thyroid papillary carcinoma cell line, DHT at concentrations between 10−12 and 10−8 m significantly decreased the growth rate. DHT (10−9 m) produced an approximately 50–60% inhibition of cell proliferation and the antiandrogen cyproterone acetate was capable of reversing such effects. The DHT-induced reduction of TPC cell proliferation was associated with a significant reduction of c-myc RNA levels. Thyroperoxidase mRNA levels and thyroglobulin production were not reduced by androgen in primary cultures of goitrous cells. In conclusion, our results indicated that androgens may have a role in this gland by reducing the proliferation, but not the function, of follicular cells. Journal of Endocrinology (1996) 151, 185–194


1986 ◽  
Vol 250 (4) ◽  
pp. E464-E469
Author(s):  
S. Y. Chow ◽  
Y. C. Yen-Chow ◽  
H. S. White ◽  
D. M. Woodbury

Iodide uptake by primary cultures of turtle thyroid cells decreased linearly with reduction of Na+ concentration in the medium, but changes in medium Cl- concentration did not affect iodide uptake. Ouabain, furosemide, monensin, and perchlorate all decreased 125I-uptake by cultured thyroid cells, whereas amiloride and triamterene did not. Ouabain, monensin, perchlorate, and amiloride depolarized the membrane of cultured cells, whereas furosemide and triamterene had no effect. Ouabain and perchlorate increased intracellular Na+ and Cl- and decreased K+ activities; furosemide and monensin reduced all three ions, but triamterene had no effect. Amiloride decreased intracellular Na+ and increased intracellular Cl- activities, however, its effect on K+ activity could not be determined because of interference by this compound of the K+ ion exchanger. All the agents, except furosemide, inhibited Na+-K+-ATPase activity. These experiments demonstrate that 1) Na+-I- cotransport is responsible for most iodide accumulation in thyroid cells; 2) Na+-I- cotransport system is linked to the Na+-K+ pump; 3) active iodide transport does not always correlate with Na+-K+-ATPase activity; 4) a perchlorate-sensitive iodide transport system is present in thyroid cells; 5) transport processes, not involved in active iodide transport (Na+-Cl- cotransport and Na+-H+ counter transport), are also present in cultured thyroid cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ana Paula Santin Bertoni ◽  
Ilma Simoni Brum ◽  
Ana Caroline Hillebrand ◽  
Tania Weber Furlanetto

Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporterNIS, thyroglobulinTG, thyroperoxidaseTPO, andKI-67genes expression, in normal thyroid follicular cells, derived from human tissue.NIS,TG,TPO, andKI-67mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times,P<0.0001; 2.39 times,P=0.01; 1.58 times,P=0.0003; and 1.87 times,P<0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression ofNIS,TG, andKI-67genes increased, respectively: 1.78 times,P<0.0001; 1.75 times,P=0.037; and 1.95 times,P<0.0001, andTPOmRNA expression also increased, though not significantly (1.77 times,P=0.069). These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth.


Endocrine ◽  
2021 ◽  
Author(s):  
Francesca Coperchini ◽  
Gianluca Ricci ◽  
Laura Croce ◽  
Marco Denegri ◽  
Rubina Ruggiero ◽  
...  

Abstract Introduction Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. Purpose Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. Methods Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. Results The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. Conclusions The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.


1960 ◽  
Vol 20 (2) ◽  
pp. 83-NP ◽  
Author(s):  
W. J. IRVINE

SUMMARY Human thyroid cells were grown in tissue culture in media containing normal human serum, Hashimoto serum, and rabbit sera containing antibodies to purified human thyroglobulin and to crude thyroid extract, respectively. The thyroid cells grew equally well in all media, with the exception of the rabbit serum containing antibodies to crude thyroid extract. Intact thyroid cells obtained from tissue culture failed to fix Hashimoto antibodies in the presence of complement, whereas the constituents of disrupted thyroid cells gave a strongly positive complement-fixation test with Hashimoto serum. It is therefore suggested that the intact thyroid cell is impermeable to complement-fixing Hashimoto antibody. The evidence afforded by the present work adds further weight to the belief that Hashimoto's disease may not be due to a simple auto-immunizing process consequent upon the interaction of thyroid antigen and the known circulating auto-antibodies. Evidence in support of an alternative hypothesis involving 'cell-bound' antibodies with disruption of the follicular basement membrane is discussed.


Sign in / Sign up

Export Citation Format

Share Document