scholarly journals Tissue-specific effects of leptin administration on the abundance of mitochondrial proteins during neonatal development

2005 ◽  
Vol 187 (1) ◽  
pp. 81-88 ◽  
Author(s):  
M G Gnanalingham ◽  
A Mostyn ◽  
J Wang ◽  
R Webb ◽  
D H Keisler ◽  
...  

Many tissues undergo a rapid transition after birth, accompanied by dramatic changes in mitochondrial protein function. In particular, uncoupling protein (UCP) abundance increases at birth in the lung and adipose tissue, to then gradually decline, an adaptation that is important in enabling normal tissue function. Leptin potentially mediates some of these changes and is known to promote the loss of UCP1 from brown fat but its effects on UCP2 and related mitochondrial proteins (i.e. voltage-dependent anion channel (VDAC) and cytochrome c) in other tissues are unknown. We therefore determined the effects of once-daily jugular venous administration of ovine recombinant leptin on mitochondrial protein abundance as determined by immunoblotting in tissues that do (i.e. the brain and pancreas) and do not (i.e. liver and skeletal muscle) express UCP2. Eight pairs of 1-day-old lambs received either 100 μg leptin or vehicle daily for 6 days, before tissue sampling on day 7. Administration of leptin diminished UCP2 abundance in the pancreas, but not the brain. Leptin administration had no affect on the abundance of VDAC or cytochrome c in any tissue examined. In leptin-administered animals, but not controls, UCP2 abundance in the pancreas was positively correlated with VDAC and cytochrome c content, and UCP2 abundance in the brain with colonic temperature. In conclusion, leptin administration to neonatal lambs causes a tissue-specific loss of UCP2 from the pancreas. These effects may be important in the regulation of neonatal tissue development and potentially for optimising metabolic control mechanisms in later life.

Reproduction ◽  
2007 ◽  
Vol 133 (6) ◽  
pp. 1241-1252 ◽  
Author(s):  
D P Yakubu ◽  
A Mostyn ◽  
V Wilson ◽  
S Pearce ◽  
M C Alves-Guerra ◽  
...  

Adaptation to the extrauterine environment at birth relies upon the onset of postnatal function and increased metabolism in the lungs, liver and kidney, mediated partly by activation of mitochondrial proteins such as the voltage-dependent anion channel (VDAC), cytochromecand, in the lung only, uncoupling protein (UCP)2. The magnitude of adaptation is dependent on the maternal metabolic and endocrine environment. We, therefore, examined the influence of maternal cold exposure (MCE) induced by winter shearing of pregnant sheep in conjunction with nutrient restriction (NR; 50% reduction in maternal food intake from 110 days gestation up to term). The effect of parity was also examined, as the offspring of nulliparous mothers are growth restricted compared with multiparous offspring. All sheep were twin bearing. One twin was sampled after birth and its sibling at 30 days. In the lung, both MCE and maternal nulliparity enhanced UCP2 abundance. However, whilst VDAC abundance was decreased in both the offspring of nulliparous mothers and by NR, it was transiently raised by MCE. Kidney VDAC abundance was reduced by MCE and nulliparity, adaptations only influenced by NR in multiparous mothers. Cytochromecabundance was raised by MCE and by NR in multiparous controls and raised in offspring of nulliparous mothers. Liver VDAC and cytochromecabundance were transiently reduced by MCE and persistently lower in offspring of nulliparous mothers. In conclusion, changes in the maternal metabolic environment have marked tissue-specific effects on mitochondrial protein abundance in the lungs, liver and kidney that may be important in enabling the newborn to effectively adapt to the extrauterine environment.


Reproduction ◽  
2007 ◽  
Vol 134 (6) ◽  
pp. 823-830 ◽  
Author(s):  
D P Yakubu ◽  
A Mostyn ◽  
M A Hyatt ◽  
L O Kurlak ◽  
H Budge ◽  
...  

This study investigated the developmental and nutritional programming of two important mitochondrial proteins, namely voltage-dependent anion channel (VDAC) and cytochromec, in the sheep kidney, liver and lung. The effect of maternal nutrient restriction between early and mid-gestation (i.e. 28- to 80-day gestation, the period of maximal placental growth) on the abundance of these proteins was also examined in fetal and juvenile offspring. Fetuses were sampled at 80 and 140 days of gestation (term ~147 days), and postnatal animals at 1 and 30 days and 6 months of age. The abundance of VDAC peaked at 140 days of gestation in the lung, compared with 1 day after birth in the kidney and liver, whereas cytochromecabundance was greatest at 140 days of gestation in the liver, 1 day after birth in the kidney and 6 months of age in lungs. This differential ontogeny in mitochondrial protein abundance between tissues was accompanied with very different tissue-specific responses to changes in maternal food intake. In the liver, maternal nutrient restriction only increased mitochondrial protein abundance at 80 days of gestation, compared with no effect in the kidney. In contrast, in the lung mitochondrial protein, abundance was raised near to term, whereas VDAC abundance was decreased by 6 months of age. These findings demonstrate the tissue-specific nature of mitochondrial protein development that reflects differences in functional adaptation after birth. The divergence in mitochondrial response between tissues to maternal nutrient restriction early in pregnancy further reflects these differential ontogenies.


2019 ◽  
Vol 47 (5) ◽  
pp. 1269-1277 ◽  
Author(s):  
Toshiya Endo ◽  
Haruka Sakaue

Abstract Mitochondria are essential eukaryotic organelles responsible for primary cellular energy production. Biogenesis, maintenance, and functions of mitochondria require correct assembly of resident proteins and lipids, which require their transport into and within mitochondria. Mitochondrial normal functions also require an exchange of small metabolites between the cytosol and mitochondria, which is primarily mediated by a metabolite channel of the outer membrane (OM) called porin or voltage-dependent anion channel. Here, we describe recently revealed novel roles of porin in the mitochondrial protein and lipid transport. First, porin regulates the formation of the mitochondrial protein import gate in the OM, the translocase of the outer membrane (TOM) complex, and its dynamic exchange between the major form of a trimer and the minor form of a dimer. The TOM complex dimer lacks a core subunit Tom22 and mediates the import of a subset of mitochondrial proteins while the TOM complex trimer facilitates the import of most other mitochondrial proteins. Second, porin interacts with both a translocating inner membrane (IM) protein like a carrier protein accumulated at the small TIM chaperones in the intermembrane space and the TIM22 complex, a downstream translocator in the IM for the carrier protein import. Porin thereby facilitates the efficient transfer of carrier proteins to the IM during their import. Third, porin facilitates the transfer of lipids between the OM and IM and promotes a back-up pathway for the cardiolipin synthesis in mitochondria. Thus, porin has roles more than the metabolite transport in the protein and lipid transport into and within mitochondria, which is likely conserved from yeast to human.


2003 ◽  
Vol 90 (2) ◽  
pp. 323-328 ◽  
Author(s):  
A. Mostyn ◽  
V. Wilson ◽  
J. Dandrea ◽  
D. P. Yakubu ◽  
H. Budge ◽  
...  

The present study examined the ontogeny of mitochondrial protein abundance in adipose tissue and lungs over the first month of life in the sheep and the extent to which this may be altered by maternal undernutrition during the final month of gestation. The ontogeny of uncoupling protein (UCP), voltage-dependent anion channel (VDAC) and cytochrome c abundance were determined in adipose tissue and lungs sampled from near-term fetuses and young sheep aged 4 h, 1, 7 and 30 d. In adipose tissue, the abundance of UCP1, VDAC and cytochrome c all peaked at 1 d of age and then decreased by 30 d of age, at which stage the brown adipose tissue-specific UCP1 was no longer detectable but UCP2 was clearly abundant. For the lungs, however, UCP2 and VDAC abundance both peaked 7 d after birth and then decreased by 30 d of age. During postnatal development, therefore, a marked change in mitochondrial protein abundance occurs within both adipose tissue and lungs. Maternal nutrient restriction had no effect on lamb growth or tissue weights at 30 d of age but was associated with increased abundance of UCP2 and VDAC but not cytochrome c in both adipose tissue and lungs. These mitochondrial adaptations within both adipose tissue and the lungs of offspring born to previously nutrient-restricted mothers may compromise adipose tissue and lung function during periods of environmental stress.


2015 ◽  
Vol 43 (4) ◽  
pp. 543-552 ◽  
Author(s):  
Jemma Gatliff ◽  
Michelangelo Campanella

The mitochondrial 18-kDa translocator protein (TSPO) was originally discovered as a peripheral binding site of benzodiazepines to be later described as a core element of cholesterol trafficking between cytosol and mitochondria from which the current nomenclature originated. The high affinity it exhibits with chemicals (i.e. PK11195) has generated interest in the development of mitochondrial based TSPO-binding drugs for in vitro and in vivo analysis. Increased TSPO expression is observed in numerous pathologies such as cancer and inflammatory conditions of the central nervous system (CNS) that have been successfully exploited via protocols of positron emission tomography (PET) imaging. We endeavoured to dissect the molecular role of TSPO in mitochondrial cell biology and discovered a functional link with quality control mechanisms operated by selective autophagy. This review focuses on the current understanding of this pathway and focuses on the interplay with reactive oxygen species (ROS) and the voltage-dependent anion channel (VDAC), to which TSPO binds, in the regulation of cell mitophagy and hence homoeostasis of the mitochondrial network as a whole.


2011 ◽  
Vol 115 (5) ◽  
pp. 955-962 ◽  
Author(s):  
Kayo Hirose ◽  
Yasuo M. Tsutsumi ◽  
Rie Tsutsumi ◽  
Masayuki Shono ◽  
Erika Katayama ◽  
...  

Background Cardiac protection by volatile anesthetic-induced preconditioning and ischemic preconditioning have similar signaling pathways. Recently, it was reported that augmentation of protein modified with O-linked β-N-acetylglucosamine (O-GlcNAc) contributes to cardiac protection. This study investigated the role of O-GlcNAc in cardiac protection induced by anesthetic-induced preconditioning. Methods O-GlcNAc-modified proteins were visualized by immunoblotting. Tolerance against ischemia or reperfusion was tested in vivo (n = 8) and in vitro (n = 6). The opening of the mitochondrial permeability transition pore (mPTP) upon oxidative stress was examined in myocytes treated with calcein AM (n = 5). Coimmunoprecipitation and enzymatic labeling were performed to detect the mitochondrial protein responsible for the mPTP opening. Results Isoflurane treatment and the consequent augmentation of O-GlcNAc concentrations reduced the infarct size (26 ± 5% [mean ± SD], P < 0.001) compared with the control. The protective effect of O-GlcNAc was eliminated in the group pretreated with the O-GlcNAc transferase inhibitor alloxan (39 ± 5%, P < 0.001). Myocyte survival also showed the same result in vitro. Formation of the mPTP was abrogated in the isoflurane-treated cells (86 ± 4%, P < 0.001) compared with the control and alloxan-plus-isoflurane-treated cells (57 ± 7%, P < 0.001). Coimmunoprecipitation and enzymatic labeling studies revealed that the O-GlcNAc-modified, voltage-dependent anion channel restained the mPTP opening. Conclusions Isoflurane induced O-GlcNAc modification of mitochondrial voltage-dependent anion channel. This modification inhibited the opening of the mPTP and conferred resistance to ischemia-reperfusion stress.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karin J. P. Rocha-Brito ◽  
Stefano Piatto Clerici ◽  
Helon Guimarães Cordeiro ◽  
Amanda Petrina Scotá Ferreira ◽  
Emanuella Maria Barreto Fonseca ◽  
...  

Abstract Melanoma is a type of skin cancer with low survival rates after it has metastasized. In order to find molecular differences that could represent targets of quercetin in anti-melanoma activity, we have chosen SKMEL-103 and SKMEL-28 melanoma cells and human melanocytes as models. Firstly, we observed that quercetin was able in reducing SKMEL-103 cell viability, but not in SKMEL-28. Besides that, quercetin treatment caused inhibition of AXL in both cell lines, but upregulation of PIM-1 in SKMEL-28 and downregulation in SKMEL-103. Moreover, HIF-1 alpha expression decreased in both cell lines. Interestingly, quercetin was more effective against SKMEL-103 than kinases inhibitors, such as Imatinib, Temsirolimus, U0126, and Erlotinib. Interestingly, we observed that while the levels of succinate dehydrogenase and voltage-dependent anion channel increased in SKMEL-103, both proteins were downregulated in SKMEL-28 after quercetin’s treatment. Furthermore, AKT, AXL, PIM-1, ABL kinases were much more active and chaperones HSP90, HSP70 and GAPDH were highly expressed in SKMEL-103 cells in comparison with melanocytes. Our findings indicate, for the first time, that the efficacy of quercetin to kill melanoma cells depends on its ability in inhibiting tyrosine kinase and upregulating mitochondrial proteins, at least when SKMEL-103 and SKMEL-28 cells response were compared.


Sign in / Sign up

Export Citation Format

Share Document