Probabilistic prediction of floods and experience from structural failures

Author(s):  
Milan Holicky ◽  
Miroslav Sykora
Author(s):  
Shubham N. Dadgal ◽  
Shrikant Solanke

In modern days for structures in coastal areas it has been observed that the premature structural failures are occurs due to corrosion of the reinforcements of the designed structural member. The corrosion causes the structural damage which in turn leads to reduction in the bearing capacity of the concerned structural members. The aim of this study was to study the effect of partial replacement of fly ash to minimize the corrosion effect. Beams were designed and corroded by using artificial method known accelerated corrosion method. The beams were then tested for flexural and bond strength. Also the weight loss of the reinforced bars was been determined using electrical resistivity method. The fly ash will replace by 10% and 15%.The strength will calculate at varying percentage of corrosion at 10% and 15%. Beams will cast at M25 grade concrete. The flexural strength will test by using UTM and the bond strength will calculate using pullout test.


1988 ◽  
Vol 16 (3) ◽  
pp. 146-170 ◽  
Author(s):  
S. Roy ◽  
J. N. Reddy

Abstract A good understanding of the process of adhesion from the mechanics viewpoint and the predictive capability for structural failures associated with adhesively bonded joints require a realistic modeling (both constitutive and kinematic) of the constituent materials. The present investigation deals with the development of an Updated Lagrangian formulation and the associated finite element analysis of adhesively bonded joints. The formulation accounts for the geometric nonlinearity of the adherends and the nonlinear viscoelastic behavior of the adhesive. Sample numerical problems are presented to show the stress and strain distributions in bonded joints.


Author(s):  
Arun Kumar Karunanithi ◽  
Joseph Caroselli ◽  
Jason Christensen ◽  
Michell Espitia

Abstract Laser Assisted Device Alteration (LADA) or Soft Defect Localization (SDL) is commonly used to root cause device marginality due to functional or structural failures. At a high level, LADA involves setting the device under test (DUT) at its marginal state and using focused near infra-red laser beams to perturb sensitive circuitry [1]. Scanning the focused laser beam over the die can be a long and time-consuming process. In this paper, two LADA cases are presented, which involve a parametric measurement failure while running a dynamic ATE test. Using LADA technique, these two cases were root caused. These two cases also explain how a parametric measurement-based LADA can be setup on ATE, as well as a synchronization method independent of vectors in a pattern. Synchronization was necessitated in the 2nd case due to the asymmetric test program loop, as well as the long test program cycle time. There are many factors which impact LADA turnaround time and it can take anywhere between few seconds to one day. The two major factors are the size of the Area of Interest (AOI) and test program cycle time. Test program cycle time influences the laser “dwell time” for LADA. Dwell time, in simple terms, is the total time the laser is parked at each pixel. The laser can also be synchronized with the test program cycle, keeping the two always in phase. This is explained in Case 2, where LADA synchronization was implemented, and the analysis was successfully completed in time, even though the test cycle time was very long.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
David Monciardini ◽  
Jukka Tapio Mähönen ◽  
Georgina Tsagas

AbstractThe article introduces the thematic issue of Accounting, Economics, and Law: A Convivium dedicated to the regulation of non-financial reporting. It provides the reader with an overview of the varying approaches and frameworks that have emerged over time in relation to the reporting of non-financial information. In particular, the article focuses on the European Non-Financial Reporting Directive. We maintain that to date this latter initiative has failed to deliver on its intended objectives. In the context of the ongoing revision process of this initiative, the present paper outlines five key areas to be improved drawing on the lessons learnt from the past as well as from key points raised by the papers in the present thematic issue. What emerges from this collective effort is a renewed agenda that highlights some of the structural failures of the current reporting regime and a blueprint for future reforms. The final section summarises the various contributions of articles included in this thematic issue.


Aerospace ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 29
Author(s):  
Stanley Förster ◽  
Michael Schultz ◽  
Hartmut Fricke

The air traffic is mainly divided into en-route flight segments, arrival and departure segments inside the terminal maneuvering area, and ground operations at the airport. To support utilizing available capacity more efficiently, in our contribution we focus on the prediction of arrival procedures, in particular, the time-to-fly from the turn onto the final approach course to the threshold. The predictions are then used to determine advice for the controller regarding time-to-lose or time-to-gain for optimizing the separation within a sequence of aircraft. Most prediction methods developed so far provide only a point estimate for the time-to-fly. Complementary, we see the need to further account for the uncertain nature of aircraft movement based on a probabilistic prediction approach. This becomes very important in cases where the air traffic system is operated at its limits to prevent safety-critical incidents, e.g., separation infringements due to very tight separation. Our approach is based on the Quantile Regression Forest technique that can provide a measure of uncertainty of the prediction not only in form of a prediction interval but also by generating a probability distribution over the dependent variable. While the data preparation, model training, and tuning steps are identical to classic Random Forest methods, in the prediction phase, Quantile Regression Forests provide a quantile function to express the uncertainty of the prediction. After developing the model, we further investigate the interpretation of the results and provide a way for deriving advice to the controller from it. With this contribution, there is now a tool available that allows a more sophisticated prediction of time-to-fly, depending on the specific needs of the use case and which helps to separate arriving aircraft more efficiently.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Guozhu Cheng ◽  
Rui Cheng ◽  
Yulong Pei ◽  
Liang Xu

To predict the probability of roadside accidents for curved sections on highways, we chose eight risk factors that may contribute to the probability of roadside accidents to conduct simulation tests and collected a total of 12,800 data obtained from the PC-crash software. The chi-squared automatic interaction detection (CHAID) decision tree technique was employed to identify significant risk factors and explore the influence of different combinations of significant risk factors on roadside accidents according to the generated decision rules, so as to propose specific improved countermeasures as the reference for the revision of the Design Specification for Highway Alignment (JTG D20-2017) of China. Considering the effects of related interactions among different risk factors on roadside accidents, path analysis was applied to investigate the importance of the significant risk factors. The results showed that the significant risk factors were in decreasing order of importance, vehicle speed, horizontal curve radius, vehicle type, adhesion coefficient, hard shoulder width, and longitudinal slope. The first five important factors were chosen as predictors of the probability of roadside accidents in the Bayesian network analysis to establish the probability prediction model of roadside accidents. Eventually, the thresholds of the various factors for roadside accident blackspot identification were given according to probabilistic prediction results.


Sign in / Sign up

Export Citation Format

Share Document