Effect of V Addition on Tribocorrosion Wear Behavior of Boride Layer Produced on AISI 1040

2022 ◽  
Vol 11 (1) ◽  
pp. 1-8
Author(s):  
Cemal Çarboğa
Keyword(s):  
Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1207
Author(s):  
Fatih Hayat ◽  
Cihangir Tevfik Sezgin

In this study, a novel high-manganese steel (HMS) was borided at 850, 900 and 950 °C for 2, 4, and 6 h by the pack boriding process. Contrary to previous literature, borided HMS uncommonly exhibited saw-tooth morphology like low alloy steels, and manganese enhanced the boron diffusion. Another striking analysis is that the “egg-shell effect” did not occur. The present study demonstrated the silicon-rich zone for the first time in the literature by EDX mapping. Moreover, the formation mechanism of silicon-rich zones was explained and termed as “compact transfer of silicones (CTS)”. XRD analysis showed the existence of FeB, Fe2B, MnB and SiC phases. The boriding time and temperature increased the thickness of the boride layer from 31.41 μm to 117.65 µm. The hardness of the borided layer ranged from 1120 to 1915 HV0.05. The activation energy of borided HMS was found to be a very low result compared to high alloy steel investigated in the literature. The Daimler-Benz Rockwell-C adhesion test showed that adhesions of borided HMS surfaces are sufficient. The dry sliding wear tests showed that boriding treatment increased the wear resistance of untreated HMS by 5 times. The present study revealed that the boriding process extended the service life of HMS components.


2020 ◽  
Vol 59 (1) ◽  
pp. 314-321
Author(s):  
Bülent Aktaş ◽  
Mehmet Toprak ◽  
Adnan Çalık ◽  
Ali Tekgüler

AbstractIn this study, Hardox 450 and HiTuf steels were boronized by pack-boriding method at 800, 900, and 1000∘C for 5 h. The phases, microstructure, hardness, and wear behavior of boride layers formed on the surface of samples were investigated using XRD, SEM, Micro-Vickers hardness testers, and a pin-on-disc tribotester, respectively. XRD analysis showed that both FeB and Fe2B phases were formed in the borided area of Hardox 450 steel, but only Fe2B phase occurred in the boride layer of the HiTuf steel. Micro-Vickers hardness results indicated that the hardness values of the boride layer decreased from the column-shaped structure to towards the matrix in both of Hardox 450 and HiTuf steels. Furthermore, the wear test results showed the coefficients of friction (COF) decreased significantly in the borided samples. The COF of the unborided Hardox 450 steel was reduced considerably from 0.29 to 0.02 by boriding treatment. Similarly, the COF of unborided HiTuf steel was significantly diminished from 0.16 to 0.04 by boriding treatment. In conclusion, the results of this study have indicated that the wear resistance of Hardox 450 and HiTuf steels can be improved by pack-boriding.


Wear ◽  
2015 ◽  
Vol 328-329 ◽  
pp. 110-114 ◽  
Author(s):  
Amir Motallebzadeh ◽  
Emre Dilektasli ◽  
Murat Baydogan ◽  
Erdem Atar ◽  
Huseyin Cimenoglu

2017 ◽  
Vol 24 (02) ◽  
pp. 1750016 ◽  
Author(s):  
XIAOYUE JIN ◽  
JIE WU ◽  
BIN WANG ◽  
XUAN YANG ◽  
LIN CHEN ◽  
...  

The plasma electrolytic borocarbonitriding (PEB/C/N) process on pure iron was carried out in 25% borax solution with glycerine and carbamide additives under different discharge time at 360[Formula: see text]V. The morphology and structure of PEB/C/N hardened layers were analyzed by SEM and XRD. The hardness profiles of hardened layers were measured by microhardness test. Corrosion behavior of PEB/C/N layers was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Their wear performance was carried out using a pin-disc friction and wear tester under dry sliding test. The PEB/C/N samples mainly consisted of [Formula: see text]-Fe, Fe2B, Fe3C, FeN, FeB, Fe2O3 and Fe4N phases, and the Fe2B phase was the dominant phase in the boride layer. It was found that the thickness of boride layer increased with the discharge time and reached 14[Formula: see text][Formula: see text]m after 60[Formula: see text]min treatment. The microhardness of the boride layer was up to 2100[Formula: see text]HV, which was much higher than that of the bare pure iron (about 150[Formula: see text]HV). After PEB/C/N treatment, the corrosion resistance of pure iron was slightly improved. The friction coefficient of PEB/C/N treated pure iron decreased to 0.129 from 0.556 of pure iron substrate. The wear rate of the PEB/C/N layer after 60[Formula: see text]min under dry sliding against ZrO2 ball was only 1/10 of that of the bare pure iron. The PEB/C/N treatment is an effective way to improve the wear behavior of pure iron.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


2020 ◽  
Vol 32 (4) ◽  
pp. 042015
Author(s):  
Alireza Mostajeran ◽  
Reza Shoja-Razavi ◽  
Morteza Hadi ◽  
Mohammad Erfanmanesh ◽  
Hadi Karimi

2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


Author(s):  
Eric Espíndola ◽  
Mateus José Araújo de Souza ◽  
BEATRIZ SEABRA MELO ◽  
Vinicius Silva dos Reis ◽  
Clóvis Santana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document