Analysis of Shear-critical reinforced concrete columns under variable axial load

2022 ◽  
pp. 1-24
Author(s):  
Dimitrios K. Zimos ◽  
Panagiotis E. Mergos ◽  
Vassilis K. Papanikolaou ◽  
Andreas J. Kappos

Older existing reinforced concrete (R/C) frame structures often contain shear-dominated vertical structural elements, which can experience loss of axial load-bearing capacity after a shear failure, hence initiating progressive collapse. An experimental investigation previously reported by the authors focused on the effect of increasing compressive axial load on the non-linear post-peak lateral response of shear, and flexure-shear, critical R/C columns. These results and findings are used here to verify key assumptions of a finite element model previously proposed by the authors, which is able to capture the full-range response of shear-dominated R/C columns up to the onset of axial failure. Additionally, numerically predicted responses using the proposed model are compared with the experimental ones of the tested column specimens under increasing axial load. Not only global, but also local response quantities are examined, which are difficult to capture in a phenomenological beam-column model. These comparisons also provide an opportunity for an independent verification of the predictive capabilities of the model, because these specimens were not part of the initial database that was used to develop it.

Author(s):  
Kazuhiro Kitayama ◽  
Hiromu Katae

The seismic performance of a corner beam-column joint in reinforced concrete frames was studied by testing two three-dimensional corner beam-column subassemblage specimens without slabs under constant column axial load and bi-directional lateral cyclic load reversals. The column-to-beam flexural strength ratio was varied from 1.4 to 2.3 by changing the magnitude of column axial load. Although a sufficient margin to prevent shear failure was provided to a corner beam-column joint in the test, the subassemblage specimens failed in joint hinging after beam and column longitudinal bars and joint hoops yielded. The ultimate joint hinging capacity of a corner joint under bi-directional lateral loading was enhanced by an increase in column compressive axial load, and can be estimated based on the new mechanism proposed by Kusuhara and Shiohara.


2018 ◽  
Vol 21 (14) ◽  
pp. 2169-2183 ◽  
Author(s):  
Justin M Russell ◽  
John S Owen ◽  
Iman Hajirasouliha

Previous studies have demonstrated that reinforced concrete flat slab structures could be vulnerable to progressive collapse. Although such events are dynamic, simplified static analyses using the sudden column loss scenario are often used to gain an indication into the robustness of the structure. In this study, finite element analysis is used to replicate column loss scenarios on a range of reinforced concrete flat slab floor models. The model was validated against the results of scaled-slab experiments and then used to investigate the influence of different geometric and material variables, within standard design ranges, on the response of the structure. The results demonstrate that slab elements are able to effectively redistribute loading after a column loss event and therefore prevent a progressive collapse. However, the shear forces to the remaining columns were 159% of their fully supported condition and increased to 300% when a dynamic amplification factor of 2.0 was applied. It is shown that this can potentially lead to a punching shear failure in some of the slab elements.


2011 ◽  
Vol 243-249 ◽  
pp. 149-155 ◽  
Author(s):  
Zhe Li ◽  
Shao Ji Chen ◽  
Ye Ni Wang ◽  
Cui Ping Zhang ◽  
Jing Xu

The neutral axis change along with axial load ratio, load angle, section size etc. For the neutral axis of SRCLSC(steel reinforced concrete L-shaped column) is neither plumb with the plane that the moment work on, nor parallel with borderlines of SRCLSC section, it is difficult to get loading capacity and ductility of SRCLSC on biaxial eccentric loading. Based on the plane-section assumption, a method for the nonlinear analysis of complete response process for ductility of 15 SRCLSC..It include 36 sets for load angle, 6 sets for axial load ratio, 3 sets for concrete strength, 3 sets for the content of steel, 2 sets for steel style, 3 sets for stirrup ratio, 3 sets for steel location, 3 sets for section size, 3 sets for stirrup diameter about SRCLSC. The ductile behavior of L-shaped, with calculating 1068 loading conditions,are investigated. It concluded that axial load ratio, load angle, and ratio of the spacing of stirrups and longitudinal reinforcement’s diameter (s/d) are most important factors.


2020 ◽  
Vol 8 (3) ◽  
pp. 127-136
Author(s):  
Taufiq Saidi ◽  
Rudiansyah Putra ◽  
Zahra Amalia ◽  
Munawir Munawir

Proper design of transverse reinforcement in the RC column is needed to maintain its ability to deform under axial and shear load safely. Even though mandatory building codes for transverse support of the RC column exist, shear failure was still found in the last high earthquake in Pidie, Aceh, in 2016. Therefore, as an attempt to improve RC column strength and elasticity, the effect of transverse reinforcement configuration was evaluated experimentally to a column subjected to an axial and shear load. The experiment was conducted by using four-column specimens with a cross-section 200 x 200 mm. Four types of transverse reinforcement configurations were applied in each column. The test was carried out by loading an axial load always and shear load gradually until its failure. The test results show that the configuration of transverse reinforcement has a significant effect of maintaining column stiffness, which was subjected to compressive axial load and shear load. Furthermore, the arrangement of transverse reinforcement influences the compressive strength significantly and enhance the concrete shear capacity of a column due to its confinement effect.


2015 ◽  
Vol 37 ◽  
pp. 247 ◽  
Author(s):  
Hooman Farahmand ◽  
Mohammad Reza Azadi Kakavand ◽  
Shahriar Tavousi Tafreshi ◽  
Pooria Hafiz Hafiz

Experimental research activities and post-earthquake considerations have demonstrated that reinforcedconcrete columns with light or widely spaced transverse reinforcement are vulnerable to shear failure duringearthquakes. According to this point by using failure limit curve, we can assess the effective parameters in shearand axial failure of reinforced concrete columns in framed buildings. In the current study by flexural, shear andaxial springs which are used in series, shear and axial failures and important effective parameters have beenassessed, Besides 5,10 and 15 story models with different amounts of initial axial load ratio have been analyzedby nonlinear push-over analysis. The results of analytical models contain behavior of buildings based on differentinitial axial load ratio and different spacing of transverse reinforcement are compared


2017 ◽  
Vol 62 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Ma Ying ◽  
Gong Jin-xin

This paper investigates the seismic failure modes and horizontal deformation capacity of reinforced concrete square columns based on the pseudo-static test. The controlled variables include shear aspect ratio, axial load ratio and stirrup spacing. The seismic failure modes, the inelastic deformation capacity after yielding and the deformation components due to flexure, shear and anchorage slip of the RC columns were analyzed, especially flexural-shear failure. The results show that decreasing shear aspect ratio, or increasing axial load or stirrup spacing can result in the change of column failure mode from flexural failure to flexural- shear failure or shear failure, the pinching of hysteresis loops, the reductions of hysteresis loop area and deformation capacity. With the increase of total displacement, all three displacement components increased; the contribution of flexure displacement in total displacement reduced, the contribution of shear displacement increased, the contribution of anchorage slip displacement changed in the range of 30%- 40%.


2019 ◽  
Vol 20 (6) ◽  
pp. 2056-2068 ◽  
Author(s):  
Pui‐Lam Ng ◽  
Viktor Gribniak ◽  
Ronaldas Jakubovskis ◽  
Arvydas Rimkus

2011 ◽  
Vol 147 ◽  
pp. 19-23
Author(s):  
Ashraf Mohamed Mahmoud

A finite element reinforced concrete model has been analyzed by the author with ANSYS 9 finite element program for both unstrengthened and CFRP-strengthened beams using concrete element model 25x25x25mm and discrete and smeared steel distribution with openings exist. The CFRP has been modeled using Solid46 element, which has orthotropic properties. The deflection results have been compared with an experimental and other finite element model which are performed by Mohamed [4], in which using 100x42.5x42.5 mm concrete element, smeared steel distribution with the same opening sizes, and modeling CFRP with ANSYS 5 finite element program using Link10 element which has a uniaxial properties. These results show that the author's model is much better than the Mohamed's [4] model comparing with the experimental one. A parametric study has been done on the proposed model for obtaining the maximum strains values for concrete and steel at failure loads, for different opening sizes and comparing them with the experimental one. This study show a good agreement between the proposed and experimental model results for strains values which indicate the efficiency of the proposed model for analyzing the unstrengthend and strengthened reinforced concrete beams.


2017 ◽  
Vol 21 (9) ◽  
pp. 1388-1401 ◽  
Author(s):  
Foad Mohajeri Nav ◽  
Nima Usefi ◽  
Reza Abbasnia

A simplified theoretical model is developed in the present study in order to predict the general behavior and resistance of reinforced concrete frames under column removal scenarios. The proposed model defines the load–deflection response of the middle joint above the removed column based on a four-stage procedure: classical beam mechanism stage, arching stage, transient stage, and catenary stage. A comprehensive evaluation study using two validation approaches is performed in order to investigate the reliability of the introduced model. For validation of theoretical model, the results of a comprehensive finite element method and experimental data were utilized and the results were compared with the theoretical model. The results demonstrated that the proposed theoretical procedure can establish a reliable foundation for progressive collapse assessment of reinforced concrete frame structures. The proposed model can also predict behavior of symmetrical frames, and this was validated by good agreement between finite element results and the results of the proposed numerical model.


2006 ◽  
Vol 12 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Abdesselam Zergua ◽  
Mohamed Naimi

This research is achieved in the general frame‐work of the study of the concrete behaviour. It has for objective the development of a numerical tool able to predict the behaviour of reinforced concrete columns with circular and square cross‐sections under an increasing compressive axial load. The concrete behaviour is assumed as elastic‐plastic model with an associated flow rule in compression region and as elastic with tension stiffening behaviour in the tension region. Two yield surfaces have been taken into account according to the Drucker‐Prager and Rankine failure criterions. However, the reinforcing steel is assumed as an elastic strain hardening model. A finite element method using solid cube elements for concrete, and bar elements for the reinforcement have been used. Correlation study between numerical and experimental results is conducted with the objective to establish the validity of the proposed model and identify the significance of the transverse reinforcement volumetric ratio effect on the response of reinforced concrete members. Good agreement has been observed in comparing these results.


Sign in / Sign up

Export Citation Format

Share Document