Diamond-like carbon-deposited films: a new class of biocorrosion protective coatings

2018 ◽  
Vol 6 (4–5) ◽  
pp. 266-276 ◽  
Author(s):  
Mohammad Reza Derakhshandeh ◽  
Mohammad Javad Eshraghi ◽  
Masoumeh Javaheri ◽  
Sara Khamseh ◽  
Morteza Ganjaee Sari ◽  
...  
1991 ◽  
Vol 239 ◽  
Author(s):  
Fred M. Kimock ◽  
Alex J. Hsieh ◽  
Peter G. Dehmer ◽  
Pearl W. Yip

ABSTRACTWe report on a recently commercialized Diamond-Like Carbon (DLC) coating that has been deposited on polycarbonate at near room temperature, via a unique ion beam system. Aspects of high speed impact behavior, chemical resistance, abrasion resistance, and thermal stability of the coating are examined. Results of scanning electron microscopy studies indicate that adhesion of the DLC coating is very good; no delamination of the coating was found on ballistically tested specimens. The well-bonded DLC coating did not cause the impact performance of polycarbonate to become brittle. Chemical exposure test results show that the DLC coating is capable of protecting polycarbonate from chemical attack by aggressive organic liquids. These ion beam deposited DLC coatings have considerable potential as protective coatings for optical systems.


1995 ◽  
Vol 397 ◽  
Author(s):  
Mitsugu Hanabusa ◽  
Kiyohito Tsujihara ◽  
Liu Zhengxin ◽  
Seiji Ishihara ◽  
Hironaga Uchida

ABSTRACTWe deposited diamond-like carbon (DLC) films, using frozen acetylene and acetone as the target of laser ablation. The frozen gases were dissociated by an ArF laser and a KrF laser. The DLC films were deposited on quartz substrates below 300°C. We measured the Raman spectra to identify the deposited films as DLC. The films showed the broad Raman peak at 1540 cm-1. The number of particles mixed into the deposits was controlled by laser power densities. By using the ArF laser for frozen acetylene we could reduce the hydrogen concentration in the films, which showed a high degree of dissociation of the source gas. The oxygen content was kept at the same level in the films deposited from frozen acetone as from frozen acetylene. The present results suggested the importance of energetic and charged species ejected from the frozen gas target.


2006 ◽  
Vol 13 (01) ◽  
pp. 1-6 ◽  
Author(s):  
M. RUSOP ◽  
S. ABDULLAH ◽  
J. PODDER ◽  
T. SOGA ◽  
T. JIMBO

Nitrogenated diamond-like carbon films have been deposited on glass and p-type Si (100) substrates by radio frequency (r.f.) plasma-enhanced chemical vapor deposition (PECVD) with a frequency of 13.56 MHz at room temperature using CH 4 as precursor of carbon source and H 2 as a carrier gas. The deposition was performed at a different flow rate of nitrogen from 0 to 12 sccm under a constant r.f. power. The effect of nitrogen incorporation on the bonding states and growth kinetics of the deposited films have been investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy and optical properties by UV spectroscopy measurement. Our experimental results show that the incorporation of nitrogen has a considerable effect on the properties of the deposited films. FTIR spectra show that the nitrogen is bonded to carbon and hydrogen as C=N , C≡N , N–H and C–H bonding configurations in the as-deposited film. The incorporation of nitrogen is found to shift the Raman G peak toward the higher wave number and to increase the Raman I D /I G ratio demonstrating the graphitic character of the hydrogenated amorphous carbon–nitrogen films. Band gap is found to reduce with the increase in nitrogen concentration.


1998 ◽  
Vol 100-101 ◽  
pp. 192-195 ◽  
Author(s):  
V.Kh. Kudoyarova ◽  
A.V. Chernyshov ◽  
T.K. Zvonareva ◽  
N.B. Dzhelepova ◽  
M.B. Tsolov

1995 ◽  
Vol 49 (2) ◽  
pp. 193-199 ◽  
Author(s):  
E. A. Wachter ◽  
J. M. E. Storey ◽  
S. L. Sharp ◽  
K. T. Carron ◽  
Y. Jiang

Since the discovery of the surface-enhanced Raman scattering (SERS) effect, numerous substrate designs have been proposed for a variety of analytical applications. Although many of these have offered exceptional electromagnetic enhancement, the durability and reusability of substrates have not always been acceptable for routine analytical use. This paper discusses the design and testing of a new class of hybrid SERS substrates specifically designed to optimize electromagnetic enhancement while also affording exceptional ruggedness and reversibility of response under challenging conditions. Substrate templates are fabricated lithographically into a quartz surface, then a thin metal film is deposited, and finally the entire surface is coated with a protective layer. Examples of inorganic and organic protective coatings are provided. Analytes are measured in flowing streams of airborne vapor and aqueous liquid. Properly designed surface coatings serve a dual role as both a protective layer and as a rapidly reversible selective adsorbent for specific analytes.


1995 ◽  
Vol 388 ◽  
Author(s):  
A. A. Puretzky ◽  
D. B. Geohegan ◽  
G. E. Jellison ◽  
M. M. Mcgibbon

AbstractA comparative study of arF- and KrF-laser deposition of amorphous diamond-like carbon (DLC) films and relevant carbon plasmas has been performed. Spectroscopic ellipsometry and EELS analysis of the DLC films deposited on Si <100> and NaCl substrates were utilized to characterize the high quality arF- and KrF-laser deposited films (up to 84% of sp3 bonded carbon in 7 J/cm2 -ArF-laser DLC film). Gated ICCD imaging, luminescence and ion current probe diagnostics of the carbon plume have revealed quite different properties of carbon plasmas generated by arF- and KrF- lasers. KrF-laser (6.7 J/cm2) irradiation produces a less energetic carbon plasma containing larger amounts of C2 and probably larger clusters compared with arF-laser irradiation at the same energy fluence. We conclude that the more energetic and highly-atomized arF-laser carbon plasma results in the better diamond-like properties.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 771
Author(s):  
Pavel Bulkin ◽  
Patrick Chapon ◽  
Dmitri Daineka ◽  
Guili Zhao ◽  
Nataliya Kundikova

Protection of silver surface from corrosion is an important topic, as this metal is highly susceptible to damage by atomic oxygen, halogenated, acidic and sulfur-containing molecules. Protective coatings need to be efficient at relatively small thicknesses, transparent and must not affect the surface in any detrimental way, during the deposition or over its lifetime. We compare PECVD-deposited SiNx films to efficiency of ALD-deposited AlOx films as protectors of front surface silver mirrors against damage by oxygen plasma. Films of different thickness were deposited at room temperature and exposed to O2 ECR-plasma for various durations. Results were analyzed with optical and SEM microscopy, pulsed GD-OES, spectroscopic ellipsometry and spectrophotometry on reflection. Studies indicate that both films provide protection after certain minimal thickness. While this critical thickness seems to be smaller for SiNx films during short plasma exposures, longer plasma treatment reveals that the local defects in PECVD-deposited films (most likely due to erosion of some regions of the film and pinholes) steadily multiply with time of treatment and lead to slow drop of reflectance of SiNx-protected mirrors, whereas we showed before that ALD-deposited AlOx films reliably protect silver surface during long plasma exposures.


Sign in / Sign up

Export Citation Format

Share Document