scholarly journals JAK3/STAT6 Stimulates Bone Marrow–Derived Fibroblast Activation in Renal Fibrosis

2015 ◽  
Vol 26 (12) ◽  
pp. 3060-3071 ◽  
Author(s):  
Jingyin Yan ◽  
Zhengmao Zhang ◽  
Jun Yang ◽  
William E. Mitch ◽  
Yanlin Wang
2017 ◽  
Vol 92 (6) ◽  
pp. 1433-1443 ◽  
Author(s):  
Hua Liang ◽  
Zhengmao Zhang ◽  
Jingyin Yan ◽  
Yuguo Wang ◽  
Zhaoyong Hu ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 1107-1118
Author(s):  
Ningning Li ◽  
Zhan Wang ◽  
Tao Sun ◽  
Yanfei Lei ◽  
Xianghua Liu ◽  
...  

Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1. Result: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


10.2741/3072 ◽  
2008 ◽  
Vol Volume (13) ◽  
pp. 5163 ◽  
Author(s):  
Volha Ninichuk

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhou ◽  
Yang Lin ◽  
Xiuhua Kang ◽  
Zhicheng Liu ◽  
Wei Zhang ◽  
...  

Abstract Background Previous reports have identified that human bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) with their cargo microRNAs (miRNAs) are a promising therapeutic approach for the treatment of idiopathic pulmonary fibrosis (IPF). Therefore, we explored whether delivery of microRNA-186 (miR-186), a downregulated miRNA in IPF, by BMSC EVs could interfere with the progression of IPF in a murine model. Methods In a co-culture system, we assessed whether BMSC-EVs modulated the activation of fibroblasts. We established a mouse model of PF to evaluate the in vivo therapeutic effects of BMSC-EVs and determined miR-186 expression in BMSC-EVs by polymerase chain reaction. Using a loss-of-function approach, we examined how miR-186 delivered by BMSC-EVs affected fibroblasts. The putative relationship between miR-186 and SRY-related HMG box transcription factor 4 (SOX4) was tested using luciferase assay. Next, we investigated whether EV-miR-186 affected fibroblast activation and PF by targeting SOX4 and its downstream gene, Dickkopf-1 (DKK1). Results BMSC-EVs suppressed lung fibroblast activation and delayed IPF progression in mice. miR-186 was downregulated in IPF but enriched in the BMSC-EVs. miR-186 delivered by BMSC-EVs could suppress fibroblast activation. Furthermore, miR-186 reduced the expression of SOX4, a target gene of miR-186, and hence suppressed the expression of DKK1. Finally, EV-delivered miR-186 impaired fibroblast activation and alleviated PF via downregulation of SOX4 and DKK1. Conclusion In conclusion, miR-186 delivered by BMSC-EVs suppressed SOX4 and DKK1 expression, thereby blocking fibroblast activation and ameliorating IPF, thus presenting a novel therapeutic target for IPF.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54001 ◽  
Author(s):  
Na Liu ◽  
Song He ◽  
Li Ma ◽  
Murugavel Ponnusamy ◽  
Jinhua Tang ◽  
...  

2018 ◽  
Vol 34 (10) ◽  
pp. 1657-1668 ◽  
Author(s):  
Ying Yang ◽  
Xiaojian Feng ◽  
Xinyan Liu ◽  
Ying Wang ◽  
Min Hu ◽  
...  

AbstractBackgroundRenal fibrosis is a key pathological feature and final common pathway leading to end-stage kidney failure in many chronic kidney diseases. Myofibroblast is the master player in renal fibrosis. However, myofibroblasts are heterogeneous. Recent studies show that bone marrow-derived macrophages transform into myofibroblasts by transforming growth factor (TGF)-β-induced macrophage–myofibroblast transition (MMT) in renal fibrosis.MethodsTGF-β signaling was redirected by inhibition of β-catenin/T-cell factor (TCF) to increase β-catenin/Foxo in bone marrow-derived macrophages. A kidney fibrosis model of unilateral ureteral obstruction was performed in EGFP bone marrow chimera mouse. MMT was examined by flow cytometry analysis of GFP+F4/80+α-SMA+ cells from unilateral ureteral obstruction (UUO) kidney, and by immunofluorescent staining of bone marrow-derived macrophages in vitro. Inflammatory and anti-inflammatory cytokines were analysis by enzyme-linked immunosorbent assay.ResultsInhibition of β-catenin/TCF by ICG-001 combined with TGF-β1 treatment increased β-catenin/Foxo1, reduced the MMT and inflammatory cytokine production by bone marrow-derived macrophages, and thereby, reduced kidney fibrosis in the UUO model.ConclusionsOur results demonstrate that diversion of β-catenin from TCF to Foxo1-mediated transcription not only inhibits the β-catenin/TCF-mediated fibrotic effect of TGF-β, but also enhances its anti-inflammatory action, allowing therapeutic use of TGF-β to reduce both inflammation and fibrosis at least partially by changing the fate of bone marrow-derived macrophages.


Sign in / Sign up

Export Citation Format

Share Document