Intensification of foam technology by the energy of the electrohydrothermal force field. Part 1. Analysis of the features of generating internal pressure in the foam mass when electric current energy is introduced into it

Author(s):  
V. N. Sokov

A concept has been put forward about the potential energy inherent in the nature of the foam system to self-compact under the complex action of an electrohydrothermal force field on it. The generation of excess internal pressure in the foam system was studied analytically and experimentally. Experimental data on monitoring the dynamics of temperature and pressure were obtained using a computer and a modern electronic component base. The method inherent in the technology allows combining a number of processes in one operation: compaction of the refractory components of the mixture, removal of shrinkage moisture, stamping of any profile of a lightweight product, providing clear edges that do not require grinding and trimming of products.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Liwu Jiang ◽  
Meiling Wu ◽  
Peng Shi ◽  
Chuanhui Zhang

Arsenic trisulfide (As2S3) has been found to be an excellent glass former at high temperature and pressure. However, there is still some scarcity for the elastic and phonon behavior of the orpiment phase. By using the Dreiding force field of the geometry optimization computations, we investigated the elastic constants, mechanical moduli, and the phonon dispersion of orpiment As2S3 under the pressure from 0 to 5 GPa. Some results of the elastic parameters of orpiment-As2S3 at 0 GPa are consistent with the experimental data. The phonon dispersions for orpiment As2S3 under pressure are also reasonable with previous calculations.


2003 ◽  
Vol 81 (7) ◽  
pp. 840-849 ◽  
Author(s):  
Luis Lugo ◽  
María JP Comuñas ◽  
Enriqueta R López ◽  
Josefa García ◽  
Josefa Fernández

In this work we report several excess thermodynamic properties for the dimethyl carbonate + n-octane system in an effort to better understand their behavior over wide temperature and pressure ranges. From previous experimental pVTx data for this system, the changes in the excess molar Gibbs energies, in the excess molar entropies, and in the excess molar enthalpies due to pressure have been determined over a wide temperature range and for pressures up to 25 MPa. A correlation of the excess volume as a function of pressure was used for each composition and temperature, together with a new, recently proposed equation for the excess molar volume as a function of temperature, pressure, and composition. Excess molar enthalpies and excess molar Gibbs energies at 298.15 K and for pressures up to 25 MPa were calculated using literature data at atmospheric pressure. Furthermore, the excess isothermal compressibility, the excess isobaric expansivity, and the excess internal pressure were calculated. The expression for the internal pressure of an ideal mixture suggested recently by Marczak has been used.Key words: excess thermodynamic properties, dimethyl carbonate, n-octane, high pressure.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Vahid Moeini ◽  
Mehri Deilam

We derive an equation for calculation of molecular diameter of dense fluids, with using simultaneous Lennard-Jones (12-6) potential function and the internal pressure results. Considering the internal pressure by modeling the average configurational potential energy and then taking its derivative with respect to volume to a minimum point of potential energy has been shown that molecular diameter is function of the resultant of the forces of attraction and the forces of repulsion between the molecules in a fluid. The regularity is tested with experimental data for 10 fluids including Ar, N2, CO, CO2, CH4, C2H6, C3H8, C4H10, C6H6, and C6H5CH3. These problems have led us to try to establish a function for the accurate calculation of the molecular diameter based on the internal pressure theory for different fluids. The relationship appears to hold both compressed liquids and dense supercritical fluids.


Author(s):  
Yudong Qiu ◽  
Daniel Smith ◽  
Chaya Stern ◽  
mudong feng ◽  
Lee-Ping Wang

<div>The parameterization of torsional / dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields.</div><div>Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms.</div><div>To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values.</div><div>However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses.</div><div>In this paper we propose a systematic and versatile workflow called \textit{TorsionDrive} to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development.</div><div>The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described.</div><div>The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</div>


1989 ◽  
Vol 54 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Juan F. Arenas ◽  
Juan I. Marcos ◽  
Francisco J. Ramírez

The general quadratic force field for the in-plane vibrations of terephthalonitrile was calculated by the semi-empirical MINDO/3 method. This force field was refined to the frequencies observed experimentally for terephthalonitrile and isotopic shifts of terephthalonitrile-[15N2]. The refined frequencies reproduce the experimental data with errors less than 0.5%. The normal coordinates and the force field in internal coordinates were also calculated from the refined field.


2021 ◽  
Author(s):  
Marcio Yamamoto ◽  
Tomo Fujiwara ◽  
Joji Yamamoto ◽  
Sotaro Masanobu

Abstract One key technology for Deep-Sea Mining is the riser system. The riser is already a field-proven technology in the Petroleum Industry. However, several differences exist between a petroleum production riser and a riser for Deep-Sea Mining, mainly related to the internal flow. The ore-slurry has a larger density than the hydrocarbons and shall be pumped with a much higher flowrate. The current software tools for riser’s dynamic analysis may include the internal fluid hydrostatic pressure and the centrifugal and Coriolis forces imposed by the bent pipe’s internal flow. However, the internal pressure drop is not calculated. The internal pressure alters the pipe’s effective tension and can alter the pipe’s bending moment changing its mechanical behavior. This article describes a computational script’s development to run embedded in a commercial software for riser’s dynamic analysis. Our script calculates the internal viscous pressure drop along with the jumper. This pressure is then converted into wall axial tension (buckling) and imposed on each node of the jumper’s numerical model. Each simulation case was calculated twice with and without the internal flow viscous pressure drop. The comparison with experimental data revealed that the jumper’s average position has a good agreement among all cases. However, the amplitude caused by the top oscillation showed some discrepancies. Experimental data has the highest amplitude in the horizontal direction, while the simulation without viscous pressure calculation had the smallest. The simulation with our embedded script had intermediary amplitude in the horizontal direction. The vertical direction amplitudes have the same behavior for all cases, but the experimental data showed the highest amplitude.


2006 ◽  
Vol 129 (1) ◽  
pp. 211-215 ◽  
Author(s):  
John D. Fishburn

Within the current design codes for boilers, piping, and pressure vessels, there are many different equations for the thickness of a cylindrical section under internal pressure. A reassessment of these various formulations, using the original data, is described together with more recent developments in the state of the art. A single formula, which can be demonstrated to retain the same design margin in both the time-dependent and time-independent regimes, is shown to give the best correlation with the experimental data and is proposed for consideration for inclusion in the design codes.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Hiun Nagamori ◽  
Koji Takahashi

The stress states of elbow and tee pipes are complex and different from those of straight pipes. The low-cycle fatigue lives of elbows and tees cannot be predicted by Manson's universal slope method; however, a revised universal method proposed by Takahashi et al. was able to predict with high accuracy the low-cycle fatigue lives of elbows under combined cyclic bending and internal pressure. The objective of this study was to confirm the validity of the revised universal slope method for the prediction of low-cycle fatigue behaviors of elbows and tees of various shapes and dimensions under conditions of in-plane bending and internal pressure. Finite element analysis (FEA) was carried out to simulate the low-cycle fatigue behaviors observed in previous experimental studies of elbows and tees. The low-cycle fatigue behaviors, such as the area of crack initiation, the direction of crack growth, and the fatigue lives, obtained by the analysis were compared with previously obtained experimental data. Based on this comparison, the revised universal slope method was found to accurately predict the low-cycle fatigue behaviors of elbows and tees under internal pressure conditions regardless of differences in shape and dimensions.


1973 ◽  
Vol 27 (3) ◽  
pp. 209-213 ◽  
Author(s):  
John F. Jackovitz ◽  
Charles E. Falletta ◽  
James C. Carter

Infrared and Raman spectra for (K+) (CF3BF3−) have been obtained from 4000 to 50 cm−1. Spectral assignments were made on the basis of C3v symmetry using both 10B and 11B compounds. In addition, a normal coordinate analysis was performed to obtain the potential energy distribution of the normal modes. A Urey-Bradley type force field was used, and force constants obtained for the CF3 and BF3 groupings were compared to those in C2F6 and BF4−.


Sign in / Sign up

Export Citation Format

Share Document