scholarly journals THE ASSESSMENT OF BANDUNG TRIGA REACTOR TANK RADIOACTIVITY IN THE PERIOD 2000-2014 USING ORIGEN-2

2017 ◽  
Vol 18 (2) ◽  
pp. 109
Author(s):  
Sudjatmi Kustituantini Alfa ◽  
Reinaldy Nazar ◽  
Ketut Kamajaya ◽  
Putranto Ilham Y

THE ASSESSMENT OF BANDUNG TRIGA REACTOR TANK RADIOACTIVITY IN THE PERIOD 2000-2014 USING ORIGEN-2            In accordance with the regulation of the regulatory body of Indonesia related to the decommissioning of nuclear reactors, the management of the Bandung TRIGA reactor have to prepare a decommissioning plan document of the Bandung TRIGA research reactor. Decommissioning program documents shall be regularly updated every five years of the operation of nuclear reactor. In year 2000, Bandung TRIGA reactor tank have been lined using aluminum alloy 6061-T6 and has activated during reactor operation. Aluminum alloy 6061-T6 contains impurities that can produce high radioactivity and has a long half-life. This paper describes the radioactivity of the reactor tank after activation during the period from 2000 to 2014 using the software ORIGEN-2. Total radioactivity of the reactor tank bottom after decay for 5 years was 1.83 10-7 Curie, while the total radioactivity of reactor tank wall was 3.2 10-3 Curie.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 954
Author(s):  
Hailong Wang ◽  
Wenping Deng ◽  
Tao Zhang ◽  
Jianhua Yao ◽  
Sujuan Wang

Material properties affect the surface finishing in ultra-precision diamond cutting (UPDC), especially for aluminum alloy 6061 (Al6061) in which the cutting-induced temperature rise generates different types of precipitates on the machined surface. The precipitates generation not only changes the material properties but also induces imperfections on the generated surface, therefore increasing surface roughness for Al6061 in UPDC. To investigate precipitate effect so as to make a more precise control for the surface quality of the diamond turned Al6061, it is necessary to confirm the compositions and material properties of the precipitates. Previous studies have indicated that the major precipitate that induces scratch marks on the diamond turned Al6061 is an AlFeSi phase with the composition of Al86.1Fe8.3Si5.6. Therefore, in this paper, to study the material properties of the AlFeSi phase and its influences on ultra-precision machining of Al6061, an elastoplastic-damage model is proposed to build an elastoplastic constitutive model and a damage failure constitutive model of Al86.1Fe8.3Si5.6. By integrating finite element (FE) simulation and JMatPro, an efficient method is proposed to confirm the physical and thermophysical properties, temperature-phase transition characteristics, as well as the stress–strain curves of Al86.1Fe8.3Si5.6. Based on the developed elastoplastic-damage parameters of Al86.1Fe8.3Si5.6, FE simulations of the scratch test for Al86.1Fe8.3Si5.6 are conducted to verify the developed elastoplastic-damage model. Al86.1Fe8.3Si5.6 is prepared and scratch test experiments are carried out to compare with the simulation results, which indicated that, the simulation results agree well with those from scratch tests and the deviation of the scratch force in X-axis direction is less than 6.5%.


Sign in / Sign up

Export Citation Format

Share Document