scholarly journals DETERMINATION OF MAINTENANCE PRIORITY INDEX (MPI) FOR COMPONENTS ON RSG-GAS SAFETY SYSTEM

2018 ◽  
Vol 20 (2) ◽  
pp. 77 ◽  
Author(s):  
Entin Hartini ◽  
Sukmanto Dibyo ◽  
Santosa Pujiarta

Reliability management is an activity to ensure no failure of all equipment when operated. Reliability management can be optimized to minimize costs or eliminate failures and causes. Critical equipment is the condition of a potentially damaging component affecting the operational reliability of the system. The criticality level of each equipment determines its impact on the operating system and the direction of maintenance improvement. The research was conducted on the main system/component of the operating system and performed at the level of reliability improvement. The purpose of this research is to prioritize the reliability of systems and equipment for safety systems using System Equipment Reliability Prioritization (SERP). Determination of component criticality level on reliability management based on category rankings of frequency data and duration of interference with certain criteria as well as system aspects, safety, quality and cost. From the evaluation results it can be concluded that the MPI of the RSG-GAS system/ component for the top 5 if sorted are KBE01 AP-01-02, PA01-02 / CR001, KBE02 AA-01/ AA-02, JE-01 (AP01-02 ) and JNA10 / 20/30 BC001 with  MPI values 143,101, 95, 90 and 60.Keywords: Maintenance, priority, index, safety system, RSG-GAS PENENTUAN MAINTENANCE PRIORITY INDEX (MPI) UNTUK KOMPONEN PADA SISTEM KESELAMATAN RSG-GAS. Manajemen keandalan  merupakan suatu kegiatan untuk menjamin tidak terjadinya suatu kegagalan pada seluruh komponen saat dioperasikan. Dengan manajemen keandalan dapat dilakukan optimasi untuk meminimumkan biaya atau menghilangkan kegagalan dan penyebabnya. komponen kritis merupakan kondisi suatu komponen yang berpotensi mengalami kerusakan yang berpengaruh pada keandalan operasional sistem. Tingkat kekritisan dari setiap komponen menentukan dampaknya terhadap sistem operasi dan arah penyempurnaan pemeliharaan. Penelitian dilakukan pada sistem/komponen yang utama dari sistem operasi dan dilakukan pada level peningkatan keandalan. Tujuan dari penelitian ini adalah menentukan indeks prioritas pemeliharaan (MPI) untuk peringkat keandalan sitem/komponen pada system keselamatan menggunakan metode System Equipment Reliability Prioritization (SERP). Penentuan tingkat kekritisan komponen pada manajemen keandalan berdasarkan peringkat kategori dari data durasi dan frekuensi gangguan  dengan kriteria tertentu serta aspek sistem, keselamatan, kualitas dan biaya. Dari hasil evaluasi dapat disimpulkan bahwa MPI dari sistem/komponen RSG-GAS untuk 5 teratas jika diurutkan adalah: KBE01 AP-01-02, PA01-02 / CR001, KBE02 AA-01 / AA-02, JE-01 (AP01-02) dan JNA10 / 20/30 BC001 dengan nilai MPI berturut turut 143,101, 95, 90 dan 60.Kata kunci:         Pemeliharaan, prioritas, indeks, sistem keselamatan, RSG-GAS

Author(s):  
O.L. Bursala ◽  
V.M. Golub ◽  
O.M. Cherednikov ◽  
V.M. Chupryna ◽  
I.V. Kovalenko

On the basis of the developed technique for estimation of aviation equipment reliability indicators, the results of determination of orientating reliability indicators of helicopters and their functional systems are presented. The list and the main reasons for the change of reliability indicators for 2016–2020 are determined.


2020 ◽  
Vol 2020 (9) ◽  
pp. 29-33
Author(s):  
Sergey Bulatov

The paper purpose is the effectiveness estimation in the technological equipment use, taking into account its reliability and productivity for defective transmission units of buses. The problem consists in the determination of time to be spent on repair of bus transmission units taking into account technological equipment reliability. In the paper there is used a probabilistic method for the prediction bus transmission units, and also a method of the dynamics of averages which allow ensuring minimum of costs for units downtime during repair and equipment cost. The need for repair of transmission units (gear box) arises on an average after 650 hours, the average productivity of the bench makes 4.2 bus / hour. The bench fails on the average after 4600 hours of work, the average time of the bench makes 2 hours. In such a way the solution of the problem specified allows analyzing the necessity of time decrease for transmission unit repair to avoid long downtimes of buses in repair areas without negative impact upon high repair quality and safety during the further operation.


1991 ◽  
Vol 56 (8) ◽  
pp. 1575-1579 ◽  
Author(s):  
Jiří Vobiš ◽  
Karel Mocek ◽  
Emerich Erdös

The formation of sodium disulfite by the heterogeneous reaction of solid active sodium sulfite with gaseous sulfur dioxide in the presence of water vapour was investigated over the temperature range of 293 to 393 K at SO2. H2O and O2 partial pressures of 1.2-7.4, 1.2-6.4 and 0-11.3 kPa, respectively. The effect of the reaction time was also examined. Kinetic measurements were supplemented with the determination of the equilibrium dissociation pressure of SO2 in contact with sodium sulfite at 373.15 K. The major aim of the work was to establish the optimum conditions for attaining the maximum degree of conversion of the solid reactant to sodium disulfite. The conditions for the formation of virtually pure sodium disulfite were found.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ayah Elshahat ◽  
Timothy Abram ◽  
Judith Hohorst ◽  
Chris Allison

Great interest is given now to advanced nuclear reactors especially those using passive safety components. The Westinghouse AP1000 Advanced Passive pressurized water reactor (PWR) is an 1117 MWe PWR designed to achieve a high safety and performance record. The AP1000 safety system uses natural driving forces, such as pressurized gas, gravity flow, natural circulation flow, and convection. In this paper, the safety performance of the AP1000 during a small break loss of coolant accident (SBLOCA) is investigated. This was done by modelling the AP1000 and the passive safety systems employed using RELAP/SCDAPSIM code. RELAP/SCDAPSIM is designed to describe the overall reactor coolant system (RCS) thermal hydraulic response and core behaviour under normal operating conditions or under design basis or severe accident conditions. Passive safety components in the AP1000 showed a clear improvement in accident mitigation. It was found that RELAP/SCDAPSIM is capable of modelling a LOCA in an AP1000 and it enables the investigation of each safety system component response separately during the accident. The model is also capable of simulating natural circulation and other relevant phenomena. The results of the model were compared to that of the NOTRUMP code and found to be in a good agreement.


Author(s):  
Lynette Morgan

Abstract This chapter discusses harvest and postharvest factors. Harvesting involves the gathering or removal of a mature crop, with minimum damage and losses, from where it has been grown and transporting it on either for direct consumption or into the postharvest handling chain for further storage and distribution. Determination of harvest maturity, hand harvesting, robotic harvesting of greenhouse crops, postharvest handling, grading and storage, fresh-cut salad processing, shelf-life evaluation, packaging, postharvest cooling, postharvest handling damage, GAP - Good Agricultural practices in Postharvest Handling, postharvest storage, postharvest disorders, food safety and hygiene, ready-to-eat, minimally processed produce, certification and food safety systems, and postharvest developments are also discussed.


Author(s):  
Liang Liu ◽  
Tao Zhou ◽  
Jie Chen ◽  
Ali Shahzad Muhammad ◽  
Juan Chen ◽  
...  

In this paper, operating characteristics of the safety system of Chinese Supercritical Water-cooled Reactor (CSR1000) is described. Selecting CSR1000 as the focus of research, and it’s active and passive safety systems are analyzed in turn. A comparison is given between these two types of safety systems. Henceforth, the features of the safety control systems of CSR1000 are obtained. The results show that for the active systems, the control speed of the pressure control system is the fastest and that of the power control system is the slowest. It is observed that the active control system exhibits simple harmonic oscillation. On the other hand, the control feature of passive control system is stable. In addition, coupling the safety systems can ensure the safety of CSR1000 in the event of a loss of flow accident (LOFA).


Author(s):  
Jianhua Cao ◽  
Xiangang Fu ◽  
Xianghui Lu ◽  
Xiaohua Jiang

Developing the advanced nuclear power plant design to meet the demanding safety, efficiency and environmental goals of electric utilities requires great efforts. A passive emergency feedwater system (PEFS) combined with other passive engineering safety features (PESF) is introduced into PCWA (Passive Combined With Active) designs. The typical accidents are calculated and analyzed for this safety system design, especially steam generator tube rupture (SGTR). It is preliminarily concluded that this safety system design in PCWA makes a great balance between passive and active safety systems, and no radioactive liquid was released to the environment except some steam from affected steam generator.


Sign in / Sign up

Export Citation Format

Share Document