scholarly journals Impact of fertilisers on five turfgrass mixtures for football pitches under natural conditions

Author(s):  
Barbara Zanelli ◽  
Matej Vidrih ◽  
Tanja Bohinc ◽  
Stanislav Trdan

For 2 years (2019–2020), a field experiment to test the activities of different fertilisation schemes on the yield, colour and health status of five different grass mixtures for football pitches was conducted. Two grass mixtures were composed of different varieties of perennial ryegrass, one mixture was composed of varieties of perennial ryegrass and Kentucky bluegrass, one mixture consisted of the species Lolium perenne, Festuca rubra, Festuca arundinacea and Poa pratensis, and the seeds of only one variety of perennial ryegrass were sowed in one plot. Three different fertilisation schemes were included in the experiment. The first scheme (A) contained an inorganic fertiliser with added soil improvers, the second scheme (B) included an organic fertiliser with added soil improvers and the third scheme (C) was composed of an inorganic fertiliser. According to this study, the grass yield largely depends on the soil temperature, amount of precipitation and soil water content, and the occurrence of the fungus Laetisaria fuciformis is influenced by the fertilisation scheme, as the % infection with the fungus was highest when organic fertilisers with low % nitrogen was used. The selection of fertilisers is seen as an important factor for the turfgrass colour.

1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


2001 ◽  
Vol 11 (1) ◽  
pp. 152a
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


2002 ◽  
Vol 12 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D.S. Gardner ◽  
J.A. Taylor

In 1992, a cultivar trial was initiated in Columbus, Ohio to evaluate differences in establishment and long-term performance of cultivars of tall fescue (Festuca arundinacea), creeping red fescue (F. rubra), chewings fescue (F. rubra ssp. fallax), hard fescue (F. brevipila), kentucky bluegrass (Poa pratensis), rough bluegrass (P. trivialis), and perennial ryegrass (Lolium perenne) under low maintenance conditions in a shaded environment. Fertilizer and supplemental irrigation were applied until 1994 to establish the grasses, after which no supplemental irrigation, or pesticides were applied and fertilizer rates were reduced to 48.8 kg·ha-1 (1 lb/1000 ft2) of N per year. Percentage cover and overall quality data were collected in 2000 and compared with data collected in 1994. Initial establishment success does not appear to be a good predictor of long-term success of a cultivar in a shaded environment. There was some variability in cultivar performance under shade within a given turfgrass species. The tall fescue cultivars, as a group, had the highest overall quality and percentage cover under shade, followed by the fine fescues, kentucky bluegrass, rough bluegrass, and perennial ryegrass cultivars.


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turfgrasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 490D-490 ◽  
Author(s):  
Hoon Kang ◽  
Chiwon W. Lee

The influence of increasing levels (0.0%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.2%, 1.6%, and 2.0%) of NaCl on the germination of Kentucky bluegrass (Poa pratensis), annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), creeping bentgrass (Agrostis palustris), tall fescue (Festuca arundinacea), and crested wheatgrass (Agropyron cristatum) was investigated. Kentucky bluegrass, creeping bentgrass, and crested wheatgrass had a 50% reduction in germination at 0.2%, 0.6%, and 0.6% NaCl, respectively, compared to the control and completely lost germination at 0.6%, 1.2%, and 1.6% NaCl, respectively. Seed germination in both annual ryegrass and perennial ryegrass was only 50% of the control at 1.2% NaCl and completely inhibited at 2.0% NaCl. Tall fescue, red fescue, and creeping red fescue showed a 50% reduction in germination at NaCl concentrations of 1.2%, 1.2%, and 0.8%, respectively, while showing a complete inhibition of germination at 2.0%, 2.0%, and 1.6% NaCl, respectively.


2004 ◽  
Vol 44 (9) ◽  
pp. 939 ◽  
Author(s):  
R. S. Tegg ◽  
P. A. Lane

The increased use of enclosed sports stadiums produces shade conditions that seriously affect the quality of turfgrass surfaces, by encouraging undesirable excess vertical succulent growth. Plant growth regulators offer an opportunity to modify a plant’s growth habit, to enable it to be better adapted to a shady environment. To examine growth response to the plant growth regulator, trinexapac-ethyl, cool-season temperate turfgrasses (Kentucky bluegrass–perennial ryegrass, Poa pratensis L./Lolium perenne L.; creeping bentgrass, Agrostis palustris Huds.; supina bluegrass, Poa supina Schrad.; and tall fescue, Festuca arundinacea Schreb.) and a warm-season species (Bermudagrass, Cynodon dactylon L.) were established in a field experiment. Main treatments were 4 levels of shade (0, 26, 56 or 65% shade), with or without trinexapac-ethyl at a rate of 0.5 kg/ha. A pot experiment measured the vertical shoot growth rates of Kentucky bluegrass–perennial ryegrass and tall fescue under 0, 56 or 65% shade, with and without trinexapac-ethyl. Both experiments were conducted under ambient conditions. Light readings taken in full sunlight, at midday through summer and autumn (major period of assessment), ranged from 1350 to 1950 μmol/m2.s. Trinexapac-ethyl reduced vertical growth of all turfgrass species. This resulted in decreased clipping weights and in clipping material having an increased dry matter percentage (i.e. reduced succulence). The impact of trinexapac-ethyl on sward quality and colour was dependent on shade level, for all species. At 56 and 65% shade, quality and colour improvement was maximised with trinexapac-ethyl application; the magnitude of improvement was dependent on species, with Kentucky bluegrass–perennial ryegrass and bentgrass showing the most benefit. It was concluded that trinexapac-ethyl improved the shade performance of a number of turfgrass species commonly used in high quality turf surfaces. It may offer the potential to reduce costs of managing turf in such an environment.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 214-217 ◽  
Author(s):  
John H. Dunn ◽  
Erik H. Ervin ◽  
Brad S. Fresenburg

Various mixtures of tall fescue, Festuca arundinacea Schreb., Kentucky bluegrass, Poa pratensis L., and perennial ryegrass, Lolium perenne L., may be beneficial for turf culture because of genetic diversity and improved tolerance to environmental stresses compared with a single species. Turf-type tall fescue, dwarf tall fescue, Kentucky bluegrass, and perennial ryegrass were seeded as cultivar blends and in all possible combinations as species mixtures in two locations, irrigated and nonirrigated. Turf was mowed at 19 and 51 mm and subjected to an interval of brief, but intensive, simulated traffic. Perennial ryegrass was the dominant species in all mixtures with tall fescue, Kentucky bluegrass, or both. After 5 years, turf-type tall fescue comprised 62% of mixtures with Kentucky bluegrass when averaged over locations. Dwarf tall fescue comprised 48% of mixtures compared with Kentucky bluegrass at 44%. Kentucky bluegrass was more competitive with tall fescue in the irrigated vs. nonirrigated location. Mowing height effected small changes in populations year to year while simulated traffic had little effect on populations at 1 year following treatment. The advantage of mixing species compared with individual species to reduce disease occurrence was evident on several occasions. Our study supports earlier research reports that tall fescue will remain competitive in mixture with Kentucky bluegrass several years after seeding.


HortScience ◽  
2012 ◽  
Vol 47 (12) ◽  
pp. 1789-1794 ◽  
Author(s):  
Matteo Serena ◽  
Bernd Leinauer ◽  
Rossana Sallenave ◽  
Marco Schiavon ◽  
Bernd Maier

A study was conducted at New Mexico State University in Las Cruces, NM, in 2009 and 2010 to investigate the establishment of five turfgrass species {‘Barrister’ kentucky bluegrass [Poa pratensis L.], ‘Barvado’ tall fescue [Festuca arundinacea Schreb.], ‘Premier II’ perennial ryegrass [Lolium perenne L.], ‘Bargusto’ bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon. transvalensis Burtt-Davy], and ‘Sea Spray’ seashore paspalum [Paspalum vaginatum O. Swartz]} from coated and uncoated seed. The grasses were irrigated at 100% reference evapotranspiration (ET0) during fall, winter, and spring and at 120% ET0 during summer with either saline [electrical conductivity (EC) = 2.3 dS·m−1] or potable water (EC = 0.6 dS·m−1). Generally, seed coating did not affect seedling emergence negatively when irrigated with saline water. During fall, perennial ryegrass exhibited fastest emergence under both saline and potable irrigation and bermudagrass was the only grass to show greater emergence when irrigated with saline water. Perennial ryegrass and tall fescue were the fastest to emerge in spring, regardless of seed coating or water quality. Seed coating delayed early establishment (less than 50% coverage) but did not affect days to reach 95% coverage (DAS95). Bermudagrass and seashore paspalum required the most DAS95 when seeded in the fall; however, bermudagrass needed fewest DAS95 when seeded in the spring. All grasses established faster when seeded in spring compared with fall. Fall-seeded perennial ryegrass and kentucky bluegrass required similar DAS95, whereas kentucky bluegrass seeded in spring was slower to reach 95% coverage than perennial ryegrass. Saline water had no effect on establishment when grasses were sown in fall. Surprisingly, grasses established in spring and irrigated with saline water reached 95% coverage 26 days faster than plots irrigated with potable water. Moreover, the growing degree-day model used in this study did not produce similar values for the different air temperatures and irrigation water qualities.


2019 ◽  
Vol 37 (1) ◽  
pp. 19-23
Author(s):  
Julie H. Campbell ◽  
Jason J. Henderson ◽  
John C. Inguagiato ◽  
Victoria H. Wallace ◽  
Anthony Minniti

Abstract Many intensively trafficked areas such as athletic fields and golf courses require constant overseeding to maintain suitable turfgrass cover. Rapid seed germination and development are critical to managing these high wear areas. The objectives of this research were to determine the effect of water aeration, seed soaking duration, and water temperature on mean germination time (MGT) and final germination percentage (FGP) of Kentucky bluegrass (Poa pratensis L., KBG) and perennial ryegrass (Lolium perenne L., PRG). Two separate controlled environment studies were conducted. PRG soaked in aerated water from 8 to 48 h had a 20% decrease in MGT compared to an untreated control, while treated KBG decreased MGT by only 10% compared to an untreated control. Soaking duration and water temperature had significant effects on KBG. KBG MGT was optimized at 20 C (68 F) water temperature with a soaking duration of 24 h. MGT of PRG was optimized when soaked for 8 h while water was aerated. There was no significant difference in FGP for any of the treatments tested. Index words: turfgrass, aeration, seed soaking. Species used in this study: Kentucky bluegrass (Poa pratensis L.); perennial ryegrass (Lolium perenne L.).


Sign in / Sign up

Export Citation Format

Share Document