scholarly journals Soil aggregate stability index and particulate organic matter in response to differently afforested lands in the temperate regions of Iran

2021 ◽  
Vol 67 (No. 8) ◽  
pp. 376-384
Author(s):  
Masoomeh Soleimany ◽  
Jamshid Eslamdoust ◽  
Moslem Akbarinia ◽  
Yahya Kooch

Aggregate Stability Index (ASI) and particulate organic matter (POM) are strongly influenced by land use and management. This work illustrates the effects of plantations on ASI and POM-C and POM-N in northern Iran. Three plantations of P. deltoides (PD), T. distichum (TD), A. subcordata (AS), and a fourth site ‒ adjacent abandoned lands (BL, as control) were selected. Soil samples were taken within 16 quadrats of each plantation and BL from the two depths of 0–15 cm and 15–30 cm during the summer. Soil C was significantly higher under TD (2.10%) than under BL (2.02%) > PD (1.61%) > AS (1.30%). Soil N was found in ranked order of AS (8.99%) > TD (7.82%) > PD (5.30%) > BL (3.68%) (P < 0.019). The significantly higher ASI was found under TD (57.49) in comparison with PD (53.10), BL (51.23), and AS (36.57). The POM-C was as follows: TD (0.209%) > PD (0.141%) > AS (0.139%) > BL (0.075%) (P = 0.020). The highest POM-N was found under TD (0.035), followed by AS (0.0284%), PD (0.0288%), and BL (0.007%). The results indicate the positive effect of afforestation on soil ASI and POM-C and POM-N, especially in the surface layers of soil.

2013 ◽  
Vol 18 (1) ◽  
pp. 33 ◽  
Author(s):  
. Yulnafatmawita ◽  
Febrian Anggriani

Ultisol as a marginal soil has become ‘a hope’ by farmers in Indonesia due to land use change, lately. However, the soil is susceptible to degradation since it has low soil aggregate stability (SAS) as affected by low soil organic matter (SOM) content. A pot trial about application of fresh organic matter (FOM) was aimed to improve SAS of Ultisols under wet tropical rainforest. Three types of FOM (Tithonia diversifolia, Chromolaena odorata, and Gliricidia sepium) at different size (8, 6, 4, 2, and 0.5 cm) were applied for 1% (20 g 2 kg-1 soil), then mixed and incubated for three months. The experimental units were allocated in a completely randomized design at a glasshouse. The results showed that FOM generally increased SOM content, percent aggregation, as well as SAS of the Ultisol. Among the organic matter (OM) sources, tithonia gave the highest SOM content after a 3-month incubation. Within the types of OM source, the smallest OM size applied showed the highest SOM content. Tithonia at 0.5 cm in size gave the highest SOM (3.47%) of the Ultisol and SAS increased by 68% compared to the initial soil. Overall, there was a positive correlation (R2 = 0.43) between SOM content and aggregate stability index, but no correlation (R2=0.04) between SOM content and percent aggregation of the Ultisols.[How to Cite : Yulnafatmawita and F Anggriani. 2013. Fresh Organic Matter Application to Improve Aggregate Stability of Ultisols under Wet Tropical Region. J Trop Soils 18 (1): 33-44. doi: 10.5400/jts.2013.18.1.33][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.33]  


2021 ◽  
Author(s):  
Konrad Greinwald ◽  
Tobias Gebauer ◽  
Ludwig Treuter ◽  
Victoria Kolodziej ◽  
Alessandra Musso ◽  
...  

<p><strong>Aims:</strong></p><p>The stability of hillslopes is an essential ecosystem service, especially in alpine regions with soils prone to erosion. One key variable controlling hillslope stability is soil aggregate stability. However, there is comparatively little knowledge about how vegetation dynamics affect soil aggregate stability during landscape evolution.</p><p><strong>Methods:</strong></p><p>We quantified soil aggregate stability by determining the Aggregate Stability Coefficient (ASC), which was developed for stone-rich soils. To reveal how hillslope aging and corresponding changes in vegetation affect the evolution of ASC, we measured plant cover, diversity, and root traits along two chronosequences in the Swiss Alps.</p><p><strong>Results:</strong></p><p>We found a significant positive effect of vegetation cover and diversity on ASC that was mediated via root traits. These relationships, however, developed in a time-depended manner: At young terrain ages, above- and belowground vegetation characteristics had a stronger effect on aggregate stability than species diversity, whereas these relationships were weaker at older stages.</p><p><strong>Conclusions:</strong></p><p>Our findings highlight the importance of vegetation dynamics for the evolution of aggregate stability and enhance our understanding of processes linked to hillslope stabilization, which is a key priority to avoid further soil degradation and connected risks to human safety in alpine areas.</p>


2016 ◽  
Vol 6 ◽  
Author(s):  
Bülent Turgut ◽  
Bahtiyar Köse

The influence of organic matter amendments on soil aggregate stability is well known, but the corresponding changes in recently deposited sediment are not well documented. In this study, improvements in aggregate stability of recently deposited sediment (RDS) supplemented with farmyard manure (FYM) and tea waste (TW) were evaluated during an 18-week incubation period under controlled conditions. FYM and TW were applied to RDS at different rates (0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% w/w), and aggregate stability was determined at different times of incubation (2<sup>nd</sup>, 4<sup>th</sup>, 6<sup>th</sup>, 8<sup>th</sup>, 10<sup>th</sup>, 14<sup>th</sup>, and 18<sup>th</sup> weeks) using wet sieving analysis. The results showed that the aggregate stability of RDS treated with TW was statistically significantly higher than those of samples treated with FYM. Aggregate stability increased with increasing rates of both FYM and TW. Aggregate stability reached the highest value at the end of the second week in FYM treated samples, and declined within the following incubation period. However, in the samples treated with TW, aggregate stability reached the highest value at the end of the eighth week. Since the results of this study clearly indicated that tea waste and farmyard manure input significantly increased the aggregate stability of RDS, it is suggested that TW and FYM could be used for structural stabilization of degraded soils.


2019 ◽  
Vol 43 ◽  
Author(s):  
Marisângela Viana Barbosa ◽  
Daniela de Fátima Pedroso ◽  
Nilton Curi ◽  
Marco Aurélio Carbone Carneiro

ABSTRACT Soil structure, which is defined by the arrangement of the particles and the porous space forming aggregates, is one of the most important properties of the soil. Among the biological factors that influence the formation and stabilization of soil aggregates, arbuscular mycorrhizal fungi (AMF) are distinguished due to extrarradicular hyphae and glomalin production. In this context, the objective of this study was to evaluate different AMF (Acaulospora colombiana, Acaulospora longula, Acaulospora morrowiae, Paraglomus occultum and Gigaspora margarita) associated with Urochloa brizantha (A. Rich.) Stapf on soil aggregate stability. The study was conducted in a completely randomized design, using an Oxisol and autoclaved sand 2:1 (v/v), with seven treatments: five AMF; and treatments with plants without inoculation and with only the soil, with 5 replicates. The experiment was conducted during 180 days and the following variables were evaluated: mycelium total length (TML); production of easily extractable glomalin-related soil protein (GRSP) in the soil and aggregate classes; stability of the dry and immersed in water aggregates through the mean geometric diameter (MGD) and the mean weighted diameter (MWD) of aggregates; and the soil aggregate stability index (ASI). It was observed that the inoculation favored soil aggregation, with a high incidence of A. colombiana, which presented the highest MGD, TML and GRSP production in the aggregates with Ø>2.0mm and for A. colombiana and A. morrowiae in the aggregates with Ø<0.105 mm, when compared to the treatment without inoculation. These results show that there is a distinction between the effects of different AMF on the formation and stability of soil aggregates.


1970 ◽  
Vol 10 (44) ◽  
pp. 313 ◽  
Author(s):  
J Loveday ◽  
JE Saunt ◽  
PM Fleming ◽  
WA Muirhead

Furrow-irrigated cotton was grown for two seasons on a previously uncultivated dense clay soil to which the following treatments had been applied :--normal ploughing (18 cm), precision ripping (30 cm), deep ploughing (40 cm), deep ripping (60 cm), and deep ploughing and deep ripping combined, with and without applications of gypsum at 10 tons an acre or organic matter at 2 1/2 tons an acre. The deep tillage significantly increased the porosity of the subsoil, but this extra porosity had largely been lost by the end of the second season. Neither the gypsum nor the organic matter addition had a significant effect upon its rate of decline. Despite the effect on porosity the deep tillages had only small and mostly non-significant effects upon water increment at irrigation. The gypsum treatment, but not the organic matter, increased water entry to the subsoil at irrigation, and this W-as apparently a result of improved hydraulic conductivity and aggregate stability, particularly in the surface layers. Considerable leaching of chloride occurred from the 30-60 cm subsoil zone in both gypsum treated and deep-tilled plots, but not in organic matter plots, and an accumulation of chloride occurred in the 0-10 cm layer (the hill) in gypsum treated plots. The increased water intake to the subsoil resulting from gypsum treatment was matched by increased water use in the following period, and hence a reduction in relative water deficit of Leaves during the peak period of water demand. Neither the organic matter nor the deep tillages had appreciable influence on water uptake. Water use during periods of peak demand was about 6 mm a day for gypsum treated plots, and this was probably lower than mould have been obtained with water freely available at all times. On the other treatments it can he inferred that water use was even further reduced by lack of available water.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Radka Kodešová ◽  
Marcela Rohošková ◽  
Anna Žigová

AbstractSoil structure stability was studied in every diagnostic horizons of six soil types (Haplic Chernozem, Greyic Phaeozem, two Haplic Luvisols, Haplic Cambisol, Dystric Cambisol) using different techniques investigating various destruction mechanisms of soil aggregates. Soil aggregate stability, assessed by the index of water stable aggregates (WSA), varied depending on the organic matter content, clay content and pHKCl. The presence of clay and organic matter coatings and fillings, and presence of iron oxides in some soils increased stability of soil aggregates. On the other hand periodical tillage apparently decreased aggregate stability in the Ap horizons. Coefficients of aggregate vulnerability resulting from fast wetting (KV 1) and slow wetting (KV 2) tests showed similar trends of the soil aggregate stability as the WSA index, when studied for soils developed on the similar parent material. There was found close correlation between the WSA index and the KV 1 value, which depended also on the organic matter content, clay content and pHKCl. Less significant correlation was obtained between the WSA index and the KV 2 value, which depended on the organic matter content and clay content. Coefficients of vulnerability resulting from the shaking after pre-wetting test (KV 3) showed considerably different trends in comparison to the other tests due to the different factors affecting aggregate stability against the mechanical destruction. The KV 3 value depended mostly on cation exchange capacity, pHKCl and organic matter content.


Jurnal Solum ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 44
Author(s):  
Yulnafatmawita Yulnafatmawita ◽  
Asmar Asmar ◽  
Vitria Purnamasari

There is no much public concern about soil aggregate stability improvement of a soil.  This is due to the fact that it does not directly affect crop yield for a short term, but it determines sustainable agriculture and development for a long term.  This research was aimed to investigate soil physical properties especially soil aggregate stability of Ultisols after fresh OM application, then to determine the exact OM dosage to improve the stability.  Ultisols used was from Limau Manis (± 367 m asl), an area in lower footslope of Mount Gadut, having wet tropical rainforest. Due to land use change, farming activities in that sloping area could enhance erosion process in the environment.  Therefore, efforts to anticipate the erosion must be found.  Fresh OM applied was Gliricidia sepium which was found plenty in the area.  Five levels of fresh Gliricidia sepium, were 0, 5, 10, 15, and 20 t/ha.  Top soil (0-20 cm depth) was mixed with OM, then incubated for 3 months in glasshouse.  The results after a 3-month incubation showed that SOM content did not statistically increase, but it improved based on the criteria, from very low to low level as OM was applied for ≥ 10 t/ha. It seemed that 10 t/ha Gliricidia sepium was the best dosage at this condition. There was a positive correlation between SOM content and aggregate stability index of Ultisols after fresh Gliricidia sepium addition.Keywords: Ultisols, soil aggregate stability, soil organic matter content


Author(s):  
Jing Zhang ◽  
Jian Li ◽  
Lingling Ma ◽  
Xinhua He ◽  
Zhanfeng Liu ◽  
...  

Reforestation is widely used to restore degraded infertile soils in the coastal area. Substantial attention has been paid to the functioning of AMF in vegetation restoration because arbuscular mycorrhizal fungi (AMF) are considered beneficial to this process. However, little is known about the effect of AMF product, glomalin-related soil protein (GRSP), on soil organic carbon (SOC) sequestration during the forest restoration. We conducted a study in a tropical region where the native forest has been seriously deforested with only a few grasses and then a series of restoration approaches have been made to restore the forest ecosystem. The study sites include a barren land (BL), a Eucalyptus exserta planted forest (EF), a mixed broadleaved forest (MF) and a secondary natural forest (SF), which represents the un-, early-, middle- and late-restoration stage, respectively. The results showed that the restoration increased EE-GRSP and T-GRSP by 3.9-12.3 times and 1.9-4.6 times compared with the barren land, respectively. The proportion of GRSP in SOC is 1.6-2.0% (EE-GRSP/SOC) and 6.5-15.8% (T-GRSP/SOC), respectively. Also, a significantly positive relationship was found between the proportion of GRSP in SOC and recalcitrant SOC composition percentage (aromatic C), as well as between GRSP and soil aggregate stability. These results together suggest that the restoration of the degraded tropical forest is beneficial to soil C sequestration with the accumulation of GRSP, most likely, through an improvement of the soil aggregate stability and increase of the proportion of recalcitrant soil C chemical composition.


Sign in / Sign up

Export Citation Format

Share Document