scholarly journals Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from forest soil

2008 ◽  
Vol 2 (No. 2) ◽  
pp. 45-53 ◽  
Author(s):  
B. Debska ◽  
M. Drag ◽  
M. Banach-Szott

The aim of the present paper was to determine hydrophilic and hydrophobic properties and the degree of polydispersity of humic acids depending on their degree of maturity and the properties of the plant material participating in the process of humification. The study involved humic acids isolated from samples taken from organic and mineral horizons of forest soils. The samples were taken under the tree stands of: pine with an admixture of hardbeam, European beech, elm, fir, spruce, and thuja. It was demonstrated that the properties of humic acids of the organic horizon and mineral horizons are determined by the kind of plant litter, mainly by the tree species. The humification process is connected with an increase of the proportion of humic acids of lower molecular size as compared to the proportion of molecules greater in size, and with an increase of hydrophilic fractions and a decrease of hydrophobic fractions. Based on the correlation relationships, it was shown that the degree of polydispersity of molecules of humic acids is related to their hydrophilic and hydrophobic properties. Humic acids with a larger proportion of high-molecular fractions demonstrate also a higher proportion of hydrophobic fractions.

2021 ◽  
Author(s):  
Magdalena Banach-Szott ◽  
Andrzej Dziamski

Abstract The aim of the research has been to determine the effect of many-year irrigation of unique grasslands on the properties of humic acids defining the quality of organic matter. The research was performed based on the soil (Albic Brunic Arenosol, the A, AE and Bsv horizons) sampled from Europe’s unique complex of permanent grasslands irrigated continuously for 150 years, applying the slope-and-flooding system; the Czerskie Meadows. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS range, hydrophilic and hydrophobic properties and the infrared spectra were produced. The research results have shown that the HAs properties depended on the depth and the distance from the irrigation ditch. The HAs of the A horizon of the soils were identified with a lower “degree of maturity”, as reflected by the values of atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR spectra, as compared with the HAs of the Bsv horizon. The HAs molecules of the soils sampled furthest from the irrigation ditch were identified with a higher degree of humification, as compared with the HAs of the soils sampled within the closest distance. The results have demonstrated that many-year grassland irrigation affected the structure and the properties of humic acids.


1994 ◽  
Vol 30 (10) ◽  
pp. 199-205 ◽  
Author(s):  
James J. Alberts ◽  
Cheryl Griffin ◽  
Katherine Gwynne ◽  
Gordon J. Leversee

The binding constants (Koc) of four polycyclic aromatic hydrocarbons (PAH) were determined for sedimentary fulvic and humic acids and the dissolved organic carbon (DOC) of five rivers in Georgia, USA. The log Koc for the PAH ranged: anthracene, 4.63-5.57; phenanthrene, 4.58-5.62; pyrene, 4.90-5.65; benzo(a)pyrene, 3.48-5.20. Log Koc values for the PAH compounds with riverine DOC were very similar for all rivers and more closely resembled those of sedimentary humic acids than the fulvic acids. The molecular size distribution of the riverine DOC indicates that >75% of the DOC occurs in size fractions >10,000 daltons. Despite similarities in Koc, there appear to be inter-river differences in the distribution of PAH among molecular size classes of the DOC, which have ramifications for water quality both in rivers and estuaries.


2004 ◽  
Vol 49 (4) ◽  
pp. 7-12 ◽  
Author(s):  
A. Kerc ◽  
M. Bekbolet ◽  
A.M. Saatci

In this study ultrafiltration has been used for the fractionation of humic acid samples. Humic acids were treated in a sequential oxidation system in which ozonation was followed by photocatalytic oxidation using TiO2. Evaluation of the spectroscopic characteristics of the oxidized and fractionated humic acid samples have shown that molecular size distribution ranges shift to lower molecular sizes depending on the oxidation stages. Applied ozone dosage and irradiation time during the photocatalysis stage are the factors affecting the molecular size distribution in the treated humic acid samples. Formation of lower molecular weight compounds during the ozonation stage resulted in increased degradation rates during the photocatalysis stage.


1973 ◽  
Vol 8 (1) ◽  
pp. 1-15 ◽  
Author(s):  
L.A. Addie ◽  
K.L. Murphy ◽  
J.L. Robertson

Abstract The importance of removing the small amounts of residual organics is increasing as the sources of clean surface water decrease. Knowledge of the nature of these soluble residual organics will be needed in order to assess the type of treatment required for their removal. Residual organics in three different biological treatment plants were analyzed and compared. An attempt was made to characterize these organics by a molecular size distribution on a Sephadex column monitored by differential ultraviolet and refractive index detectors. The organic carbon and chemical oxygen demand of the fractions collected from the column was also determined. An investigation of some of the problems inherent in the monitoring systems was conducted.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Marco Diers ◽  
Robert Weigel ◽  
Heike Culmsee ◽  
Christoph Leuschner

Abstract Background Organic carbon stored in forest soils (SOC) represents an important element of the global C cycle. It is thought that the C storage capacity of the stable pool can be enhanced by increasing forest productivity, but empirical evidence in support of this assumption from forests differing in tree species and productivity, while stocking on similar substrate, is scarce. Methods We determined the stocks of SOC and macro-nutrients (nitrogen, phosphorus, calcium, potassium and magnesium) in nine paired European beech/Scots pine stands on similar Pleistocene sandy substrates across a precipitation gradient (560–820 mm∙yr− 1) in northern Germany and explored the influence of tree species, forest history, climate, and soil pH on SOC and nutrient pools. Results While the organic layer stored on average about 80% more C under pine than beech, the pools of SOC and total N in the total profile (organic layer plus mineral soil measured to 60 cm and extrapolated to 100 cm) were greater under pine by about 40% and 20%, respectively. This contrasts with a higher annual production of foliar litter and a much higher fine root biomass in beech stands, indicating that soil C sequestration is unrelated to the production of leaf litter and fine roots in these stands on Pleistocene sandy soils. The pools of available P and basic cations tended to be higher under beech. Neither precipitation nor temperature influenced the SOC pool, whereas tree species was a key driver. An extended data set (which included additional pine stands established more recently on former agricultural soil) revealed that, besides tree species identity, forest continuity is an important factor determining the SOC and nutrient pools of these stands. Conclusion We conclude that tree species identity can exert a considerable influence on the stocks of SOC and macronutrients, which may be unrelated to productivity but closely linked to species-specific forest management histories, thus masking weaker climate and soil chemistry effects on pool sizes.


Author(s):  
Magdalena Banach-Szott ◽  
Bozena Debska ◽  
Erika Tobiasova

AbstractMany studies report organic carbon stabilization by clay minerals, but the effects of land use and soil type on the properties of humic acids (HAs) are missing. The aim of the paper is to determine the effects of land use and soil types on the characteristics of HAs, which have a considerable influence on organic matter quality. It was hypothesised that the effect of the land use on HAs properties depends on the particular size distribution. The research was performed in three ecosystems: agricultural, forest, and meadow, located in Slovakia. From each of them, the samples of 4 soil types were taken: Chernozem, Luvisol, Planosol, and Cambisol. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS range, and hydrophilic and hydrophobic properties, and the infrared spectra were produced. The research results have shown that the properties of HAs can be modified by the land use and the scope and that the direction of changes depends on the soil type. The HAs of Chernozem and Luvisol in the agri-ecosystem were identified with a higher “degree of maturity”, as reflected by atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR spectra, as compared with the HAs of the meadow and forest ecosystem. However, as for the HAs of Cambisol, a higher “degree of maturity” was demonstrated for the meadow ecosystem, as compared with the HAs of the agri- and forest ecosystem. The present research has clearly identified that the content of clay is the factor determining the HAs properties. Soils with a higher content of the clay fraction contain HAs with a higher “degree of maturity”.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3741
Author(s):  
Wioleta Pietrzak ◽  
Renata Nowak

The content of plant secondary metabolites is not stable, and factors such as the region/location effect and seasonal variations have an impact on their chemical composition, especially in parasitic plants. Research in this area is an important step in the development of quality parameter standards of medicinal plants and their finished products. The effects of the time and place of harvest and the host tree species on the chemical composition and antioxidant activity of mistletoe extracts were investigated. Statistical tools were used to evaluate the results of the spectrophotometric and LC-ESI-MS/MS studies of the phenolic composition and antioxidant activity. The investigations indicate that the qualitative and quantitative composition, influencing the biological activity of mistletoe extracts, largely depends on the origin of the plant. The mistletoe extracts exhibited a rich phenol profile and high antioxidant activity. The chemometric analysis indicated that mistletoe collected from conifers (Viscum abietis and Viscum austriacum) had the most advantageous chemical composition and antioxidant activity. Moreover, the chemical profile and biological activity of the plant material were closely related to the climatic conditions and location of the harvested plant. Higher levels of phenolic compounds and high antioxidant activity were found in extracts obtained from plant material collected in cold weather with the presence of snow and less sunshine (autumn–winter period).


Sign in / Sign up

Export Citation Format

Share Document