scholarly journals Landraces and obsolete cultivars of minor wheat species in the czech collection of wheat genetic resources

2010 ◽  
Vol 46 (Special Issue) ◽  
pp. S100-S105 ◽  
Author(s):  
Z. Stehno ◽  
J. Bradová ◽  
L. Dotlačil ◽  
P. Konvalina

The proportions of landraces in the Czech collection of wheat genetic resources significantly differentiates among wheat species, 4.2% in bread, 77.6% in emmer, and 80.0% in the einkorn wheat collections. A set of 10 selected emmer wheat landraces has been characterized by high molecular weight glutenin subunits (HMW-GSs). They were evaluated for 3 years in field trials, and described by grain quality parameters. Emmer wheat accessions differ considerably in the polymorphisms of HMW-GSs. Out of the total of 10 studied emmer wheat landraces, 5 accessions appeared to be homogeneous in the electrophoretic patterns of HMW-GSs; they were formed by a single glutenin line. Much higher crude protein content was detected in all of the emmer wheat accessions, in comparison with the control bread wheat cultivar. The proportion of this important component varied between 15.5% and 22.2%. On the other hand, SDS sedimentation, an important parameter of bread making quality, was very low (1.2–4.4 ml); and a similar situation has been recorded in the gluten index. Based on such results, the emmer wheat landraces can be considered potentially more suitable for other purposes than for the preparation of bread (<I>e.g. </I>for different grain mixtures, purée, etc.).

2020 ◽  
Vol 15 (1) ◽  
pp. 30-40
Author(s):  
Grażyna Podolska ◽  
Edyta Aleksandrowicz ◽  
Anna Szafrańska

AbstractThe aim of this study was to assess the effect of two winter wheat species: Triticum aestivum ssp. vulgare, and Triticum spelta, cultivated in different percentage of cereals in crop rotation, on their bread making potential. The analyzed grain samples were obtained from a field experiment conducted during three years 2014-2016 at the Experimental Station in Osiny (51°35’, 21°55’), Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland. The experiment was established following different percentages of shared cereals in crop rotation (SCCR): 50, 75 and 100%. Wheat cultivation was performed in accordance with good agricultural practice standards. Protein content, gluten content, Zeleny sedimentation index and alveograph properties were determined. Wheat species strongly influenced bread potential. The Triticum aestivum compared to Triticum spelta was characterized by significantly higher gluten quality and Zeleny sedimentation index as well as better alveograph properties. Common wheat showed the highest baking value (W). Spelt wheat was characterized by the lowest tenacity (P) and the highest extensibility (L). Moreover, the percentage of cereals in crop rotation had an effect on grain and dough quality parameters. Cultivation of wheat in 100% share of cereals resulted in the lowest grain and dough quality.


2018 ◽  
Vol 69 (4) ◽  
pp. 335 ◽  
Author(s):  
José Francisco Vázquez ◽  
Efraín Antonio Chacón ◽  
José María Carrillo ◽  
Elena Benavente

Future progress on the creation of wheat cultivars with high grain zinc (Zn) and iron (Fe) mineral density will depend on both the availability of suitable donor germplasm and the identification of genes or quantitative trait loci contributing to increase the accumulation of mineral elements in the wheat kernels. Multi-environment field trials were conducted to evaluate the grain Zn, Fe and protein concentration of 32 bread wheat (Triticum aestivum L.) and 20 durum wheat (T. turgidum L. var. durum) landraces locally adapted to soils covering a wide range of pH values and mineral composition. These landraces were selected after a preliminary, small-scale field trial that had analysed 425 Spanish local varieties. Analyses of variance demonstrated a significant effect of genotype on grain composition, and 16 wheat landraces with elevated grain Zn and/or Fe density across the environments were identified. These landraces rich in grain minerals represent valuable primary gene-pool parents for wheat biofortification. No pattern of native soil geochemical characteristics that could help to predict the success in collecting mineral-dense genotypes in a given area was found. Mapping populations derived from some pairs of grain-mineral-rich and -poor genotypes characterised in the study may facilitate the development of molecular markers to assist the selection of superior wheat genotypes.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 374
Author(s):  
Marta Aranguren ◽  
Ander Castellón ◽  
Ana Aizpurua

Adequate N fertilisation is crucial to increase the grain protein content (GPC) values in wheat. The recommended level of GPC needed to achieve high-quality bread-making flour should be higher than 12.5%. However, it is difficult to ensure the GPC values that the crop will achieve because N in grain is derived from two different sources: N remobilized into the grain from N accumulated in the pre-anthesis period, and N absorbed from the soil in the post-anthesis period. This study aimed to (i) evaluate the effect of the application of N on the rate of stem elongation (GS30) when farmyard manures are applied as initial fertilisers on GPC and on the chlorophyll meter (CM) values at mid-anthesis (GS65), (ii) establish a relationship between the CM values at GS65 and GPC, and (iii) determine a minimum CM value at GS65 to obtain GPC values above 12.5%. Three field trials were performed in three consecutive growing seasons, and different N fertilisation doses were applied. Readings using the CM Yara N-TesterTM were taken at GS65. The type of initial fertiliser did not affect the GPC and CM values. Generally, the greater the N application at GS30 is, the higher the GPC and CM values are. CM values can help to estimate GPC values only when yields are below 8000 kg ha−1. Additionally, CM values at GS65 should be higher than 700 to achieve high-quality bread-making flour (12.5%) at such yield levels. These results will allow farmers and cooperatives to make better decisions regarding late-nitrogen fertilisation and wheat sales.


2013 ◽  
pp. 67-69
Author(s):  
Mariann Móré ◽  
Zita Burján ◽  
Zoltán Győri ◽  
Péter Sipos

The yield and quality of wheat are mainly determined by the plant production system, thus we studied the effect of mineral fertilization. The field trials were set up in 1983 at the Látókép Research Institute of the University of Debrecen. We examined effect of different Nfertilizer doses (60 kg ha-1 N/P/K, 120 kg ha-1 N/P/K) on Lupus, Mv Toldi and GK Csillag's protein properties in 2012. During the tests, three quality parameters were determined: wet gluten content (%), wet gluten spread (mm/h) and gluten index (%). In the experiment the effect of different doses of N-fertilizers significantly influenced by the wet gluten content and gluten index of Lupus.


2013 ◽  
Vol 19 (No. 5) ◽  
pp. 189-195 ◽  
Author(s):  
M. Hrušková ◽  
K. Hanzlíková ◽  
P. Varáček

The bread-making quality of forty commercial winter wheat samples, grown in the western region of the CzechRepublic, and their flours (white flours with ash content of about 0.5%) prepared in a commercial mill was studied. Standard analytical methods (ash and protein content, wet gluten), amylolytic activity measurement (falling number), rheological investigation (alveograph, gluten index), sedimentation test and laboratory baking test were used for characterization of wheats and flours. In addition NIR method was used to calculate ash, wet gluten, sedimentation value and protein content. Statistically significant correlations were found practically between all tested quality parameters of wheat and corresponding flour samples. However, the strongest correlation (r = 0.69&ndash;0.70) significant at 0.01 level exists between specific bread volume and protein and wet gluten content, determined both by standard or by NIR methods.&nbsp;


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 136 ◽  
Author(s):  
Efraín A. Chacón ◽  
Francisco J. Vázquez ◽  
Patricia Giraldo ◽  
José M. Carrillo ◽  
Elena Benavente ◽  
...  

Wheat landraces are currently being explored mainly as a source of allelic variation related to crop resilience and low-input adaptation. Characterization of their high- and low-molecular weight glutenin subunits can aid breeders to select as donor local materials those ensuring good end-use properties in the derived elite cultivars. By using protein electrophoretic methods, we have determined the prolamin allelic profile of 116 Spanish durum wheat landraces. Their quality properties (as defined by grain protein content, sodium dodecyl sulfate (SDS) sedimentation volume and mixograph behavior) have also been assessed. The study has identified six novel glutenin alleles plus some other rare alleles some of which have been associated with improved durum wheat quality. Most of the novel variation detected needs to be characterized in a wider sample of varieties to establish any eventual beneficial effect on functional quality. Further analysis of the quality properties associated to specific allele combinations of Glu-A3, Glu-B3, and Glu-A1 has disclosed some clues on the influence on quality of certain non-allelic interactions between these main prolamin-encoding loci. Some of the landraces, showing outstanding values for the gluten quality parameters analyzed, might be directly used by farmers interested in the cultivation of traditional varieties for specialized food markets.


2014 ◽  
Vol 65 (4) ◽  
pp. 362 ◽  
Author(s):  
Maria J. Poblaciones ◽  
Oscar Santamaría ◽  
Teodoro García-White ◽  
Sara M. Rodrigo

The diet of millions of people around the world is deficient in selenium (Se). Bread-making wheat has been successfully used in Se biofortification programs under temperate climate to remedy Se deficiency. However, its suitability under Mediterranean conditions and its effect on the grain yield and quality parameters are not well known. In a wheat field in south-western Spain, two foliar Se fertilisers (sodium selenate and sodium selenite) were applied at four application rates (0, 10, 20, 40 g ha–1) in 2010–11 and 2011–12. Results showed a strong and linear relationship between total Se in grain and Se dose for both fertilisers, although selenate was much more efficient. A dose of 10 g sodium selenate ha–1 was able to increase significantly the Se in grain to close to the recommended values, although Se loss of 28% during the milling process might be expected. Grain yield was not negatively affected by fertilisation, but grain protein and dry gluten were slightly negatively affected, but only in the dry year. Alveograph parameters were either not affected or slightly favoured by Se fertilisation in any studied year. Bread-making wheat is a good candidate to be included in biofortification programs under semi-arid Mediterranean conditions.


Sign in / Sign up

Export Citation Format

Share Document