scholarly journals Effects of non-steroidal gonadal factors on LH secretion in female common carp during the reproductive cycle

2008 ◽  
Vol 53 (No. 9) ◽  
pp. 398-403
Author(s):  
J. Chyb ◽  
T. Mikolajczyk ◽  
M. Sokolowska-Mikolajczyk ◽  
M. Socha ◽  
P. Szczerbik ◽  
...  

The aim of this study was to evaluate the effects of recombinant human inhibin A, recombinant human activin A and desteroidized ovarian extract on LH secretion <I>in vitro</I> and <I>in vivo</I> in female common carp during different stages of reproductive cycle. Inhibin stimulated spontaneous as well as GnRH-stimulated LH release <I>in vivo</I> in fish during gonadal recrudescence. This hormone did not have an influence on spontaneous LH secretion in the periovulatory period, but had a slightly inhibitory effect on GnRH-stimulated LH release in this stage of gonad maturity. Activin decreased spontaneous LH secretion during gonadal recrudescence and increased LH secretion before ovulation, having no effects on GnRH-stimulated LH release during both stages of gonad maturity. The desteroidized ovarian extract failed to modify spontaneous LH secretion, but decreased GnRH-stimulated LH release during recrudescence and especially before ovulation. It is to conclude that these data suggest the differential role of inhibin/activin as substances in the regulation of LH secretion in common carp females.

2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Jonathan L. Portman ◽  
Qiongying Huang ◽  
Michelle L. Reniere ◽  
Anthony T. Iavarone ◽  
Daniel A. Portnoy

ABSTRACT Cholesterol-dependent cytolysins (CDCs) represent a family of homologous pore-forming proteins secreted by many Gram-positive bacterial pathogens. CDCs mediate membrane binding partly through a conserved C-terminal undecapeptide, which contains a single cysteine residue. While mutational changes to other residues in the undecapeptide typically have severe effects, mutation of the cysteine residue to alanine has minor effects on overall protein function. Thus, the role of this highly conserved reactive cysteine residue remains largely unknown. We report here that the CDC listeriolysin O (LLO), secreted by the facultative intracellular pathogen Listeria monocytogenes, was posttranslationally modified by S-glutathionylation at this conserved cysteine residue and that either endogenously synthesized or exogenously added glutathione was sufficient to form this modification. When recapitulated with purified protein in vitro, this modification completely ablated the activity of LLO, and this inhibitory effect was fully reversible by treatment with reducing agents. A cysteine-to-alanine mutation in LLO rendered the protein completely resistant to inactivation by S-glutathionylation, and a mutant expressing this mutation retained full hemolytic activity. A mutant strain of L. monocytogenes expressing the cysteine-to-alanine variant of LLO was able to infect and replicate within bone marrow-derived macrophages indistinguishably from the wild type in vitro, yet it was attenuated 4- to 6-fold in a competitive murine infection model in vivo. This study suggests that S-glutathionylation may represent a mechanism by which CDC-family proteins are posttranslationally modified and regulated and help explain an evolutionary pressure to retain the highly conserved undecapeptide cysteine.


1992 ◽  
Vol 263 (6) ◽  
pp. H1880-H1887 ◽  
Author(s):  
R. M. Elias ◽  
J. Eisenhoffer ◽  
M. G. Johnston

Studies with a sheep isolated duct preparation in vivo demonstrated that the route of administration of hemoglobin was important in demonstrating its inhibitory effect on lymphatic pumping. With autologous oxyhemoglobin administered intravenously (final plasma concentration 5 x 10(-5) M), pumping was not inhibited. However, the addition of oxyhemoglobin (5 x 10(-5) M) into the reservoir (lumen of the duct) resulted in > 95% inhibition of pumping. The extraluminal administration of oxyhemoglobin (10(-5) M) to bovine mesenteric lymphatics in vitro resulted in a 40% inhibition of pumping, whereas the introduction of oxyhemoglobin (10(-5) M) into the lumen of the vessels suppressed pumping 95%. In vessels mechanically denuded of endothelium, intraluminal oxyhemoglobin inhibited pumping 50%. These results suggested that oxyhemoglobin depressed pumping through an effect on both smooth muscle and endothelium. Once pumping was inhibited with oxyhemoglobin administration, stimulation of the duct with elevations in transmural pressure restored pumping activity when endothelial cells were present. However, in the absence of endothelium, pumping decreased with increases in distending pressures. We conclude that oxyhemoglobin has a direct inhibitory effect on lymphatic smooth muscle. The ability of oxyhemoglobin to alter the pressure range over which the lymph pump operates appears to be dependent on an intact endothelium.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Enhui Ma ◽  
Qianqian Wang ◽  
Jinhua Li ◽  
Xinqi Zhang ◽  
Zhenjia Guo ◽  
...  

Abstract Background Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. Methods RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. Results LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. Conclusions LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.


1984 ◽  
Vol 107 (2) ◽  
pp. 199-203
Author(s):  
A. Miyake ◽  
K. Tasaka ◽  
T. Aono

Abstract. The direct effects of oestradiol-17β (E2) on pituitary luteinizing hormone (LH) release and the role of norepinephrine (NE) in E2-induced gonadtrophin release were examined in a sequential double chamber perifusion system by perifusing the mediobasal hypothalami (MBH) and/or pituitaries excised from normally cycling female rats. Administration of E2 induced significant release (70–160% increase, P < 0.05) of LH from the pituitary of rats in pro-oestrus, but not in other stages of the oestrous cycle. When the MBH and the pituitary were perifused in sequence, E2 induced significant release of LH in all stages of the oestrous cycle except oestrus. When the pituitary from rats in dioestrus II was perifused alone with medium containing 200 ng/ml NE, significant release of LH (80–170% increase, P < 0.05) was observed after the administration of E2. The E2-induced LH release in pro-oestrus was completely abolished by perifusion with medium containing diethyldithiocarbamate, an inhibitor of NE synthesis. These findings suggest that NE may be involved in changes of pituitary responsiveness in LH secretion to oestrogen during the rat oestrous cycle.


2011 ◽  
Vol 4 (2) ◽  
pp. 78-84 ◽  
Author(s):  
Galia Zamaratskaia ◽  
Martin Rasmussen ◽  
Isabelle Herbin ◽  
Bo Ekstrand ◽  
Vladimir Zlabek

In vitro inhibition of porcine cytochrome P450 by 17β-estradiol and 17α-estradiol Sexually mature pigs are known to possess high concentrations of testicular steroids, which have been shown to change the activities of cytochrome P450 in vitro. The aim of the present study was to evaluate the regulation of CYP1A and CYP2E1 activity by the steroids dihydrotestosterone (DHT), 3β-androstenol, 17β-estradiol and 17α-estradiol. Catalytic activities of 7-ethoxyresorufin O-deethylase (EROD) and 7-methoxyresorufin O-demethylase (MROD) were used as markers of CYP1A activities, while p-nitrophenol hydroxylase (PNPH) was used as a marker of CYP2E1 activities. Of the steroids tested, only 17β-estradiol and 17α-estradiol inhibited EROD and MROD activities. This inhibition was observed when a steroid concentration of 100 μM was used, while lower concentrations showed no inhibitory effect. PNPH activities were inhibited only by 100 μM of 17β-estradiol. The significance of these results in vivo is unknown because inhibition was only found when concentrations of estrogens higher than physiological levels were used. Nevertheless, the results provided further evidence on the important role of estrogens in regulation of porcine cytochrome P450 activities.


1987 ◽  
Vol 113 (1) ◽  
pp. 103-110 ◽  
Author(s):  
A. M. Ultee-van Gessel ◽  
F. H. de Jong

ABSTRACT The influence of age on testicular inhibin in untreated, neonatally hemicastrated and prenatally irradiated rats was studied using in-vivo and in-vitro experiments. In testicular cytosols prepared from 1-, 7-, 14-, 21-, 42- and 63-day-old rats concentrations of testicular inhibin could be measured with an in-vitro bioassay method using dispersed pituitary cells. Preparations of testicular cytosols caused a dose-dependent suppression of pituitary FSH secretion, whereas no effects were found on LH secretion. Testicular content of inhibin increased gradually with age, while after 14 days of age a relatively large increase of peripheral FSH concentrations occurred in all experimental groups. Neonatal hemicastration or prenatal irradiation resulted in decreased inhibin content of the testis and increased plasma FSH levels. The production of inhibin activity by Sertoli cells obtained from 7-, 14-, 21-, 42- and 63-day-old normal rats was measured during a 24-h incubation period on the third day of culture. The inhibin production per 106 plated Sertoli cells decreased rapidly after 14 days of age and the lowest production of inhibin was found in Sertoli cells from rats of 63 days of age. After preincubation with ovine FSH significantly larger amounts of inhibin activity were detected in spent media from 21-day-old rat testes. In contrast, suppression of inhibin production was found after preculture in the presence of testosterone at most of the ages studied. These data from in-vivo and in-vitro experiments indicate that a reciprocal relationship exists between pituitary FSH secretion and inhibin production before the age of 21 days. This relationship supports the concept that inhibin is a physiologically important modulator of FSH secretion before puberty, while the role of the large amount of testicular inhibin present at the older ages remains to be determined. J. Endocr. (1987) 113, 103–110


Author(s):  
Amirreza Nasirzadeh ◽  
Mohammad hosein Jafarzadeh Maivan ◽  
Javad Bazeli ◽  
Jafar Hajavi ◽  
Negar Yavarmanesh ◽  
...  

Plant species with anti-inflammatory properties might play an essential role in combatting COVID-19 via reducing cytokine storms. We aimed to review the extant evidence of the potential therapeutic efficacy of natural products against cytokine storms by inhibiting interleukin-6 (IL-6) as a major pathological mediator. Data were collected following an electronic search in major databases (Pubmed, Scopus, Web of Science, Google Scholar) and also preprint articles on preprint and medRxiv servers by using a combination of relevant keywords. Seventeen active compounds and medicinal plants were found and reviewed in the present review. Results of both in-vivo and in-vitro experiments conducted on these compounds showed that Phillyrin, SMFM, Qiangzhi decoction, curcumin, Shen-Fu, Forsythia, and Alpha-Mangostin inhibit the production of IL-6. Andrographolide and Liu Shen Wan have an inhibitory effect on releasing this agent, while Ilex Asprella and Deoxy-11,12-didehydroandrographolide and naringin reduce the expression of IL-6. Theaflavin and Cholorogenic acid inhibit the secretion of IL-6, Xuebijing, and Chai-Hu-Gui-Zi-Gan-Jiang-Tang and Lipanpaidu prescription can reduce the serum level of IL-6. These agents also effectively improve infected lungs, increase survival rates, and minimize tissue damage. Medicinal plants and their phytochemical ingredients with down-regulatory effects on the expression of IL-6 have a potential influence on the inhibition of cytokine storms during viral infection caused by COVID-19. Therefore, phytochemicals could be regarded as promising candidates for managing cytokine storm inflammatory responses due to COVID-19 infection.


Medicina ◽  
2019 ◽  
Vol 55 (6) ◽  
pp. 283 ◽  
Author(s):  
Alexandra Irimie ◽  
Cornelia Braicu ◽  
Sergiu Pasca ◽  
Lorand Magdo ◽  
Diana Gulei ◽  
...  

Regarding cancer as a genetic multi-factorial disease, a number of aspects need to be investigated and analyzed in terms of cancer’s predisposition, development and prognosis. One of these multi-dimensional factors, which has gained increased attention in the oncological field due to its unelucidated role in risk assessment for cancer, is diet. Moreover, as studies advance, a clearer connection between diet and the molecular alteration of patients is becoming identifiable and quantifiable, thereby replacing the old general view associating specific phenotypical changes with the differential intake of nutrients. Respectively, there are two major fields concentrated on the interrelation between genome and diet: nutrigenetics and nutrigenomics. Nutrigenetics studies the effects of nutrition at the gene level, whereas nutrigenomics studies the effect of nutrients on genome and transcriptome patterns. By precisely evaluating the interaction between the genomic profile of patients and their nutrient intake, it is possible to envision a concept of personalized medicine encompassing nutrition and health care. The list of nutrients that could have an inhibitory effect on cancer development is quite extensive, with evidence in the scientific literature. The administration of these nutrients showed significant results in vitro and in vivo regarding cancer inhibition, although more studies regarding administration in effective doses in actual patients need to be done.


1994 ◽  
Vol 140 (3) ◽  
pp. 483-493 ◽  
Author(s):  
S Muttukrishna ◽  
P G Knight

Abstract To investigate the extent to which the direct actions of inhibin, activin and oestradiol on pituitary output of FSH and LH are dependent on the presence of functional gonadotrophin-releasing hormone (GnRH) receptors, we have compared the effects of these agents on cultured ovine pituitary cells derived from control and GnRH agonist-suppressed ewes. Chronic treatment with GnRH agonist reduced plasma LH and FSH levels (P<0·01) and abolished GnRH-induced release of LH and FSH both in vivo and in vitro. As expected, basal LH release and LH cell content in vitro were drastically reduced in GnRH agonist-suppressed cells (P<0·001). However, basal FSH release and FSH cell content were approximately twofold higher than in control cells (P<0·001). Irrespective of whether the cells had been desensitized to GnRH, inhibin and oestradiol were both found to suppress basal FSH release and FSH cell content in a dose-dependent fashion (P<0·001). Although inhibin had no effect on basal release of LH from control cells, it markedly enhanced GnRH-induced release (P<0·001). In contrast, inhibin increased (P<0·001) basal LH release from GnRH agonist-suppressed cells (which were unresponsive to the GnRH challenge). Inhibin had no overall effect on total LH content/well for either control or GnRH agonist-suppressed cells. Treatment with oestradiol, on the other hand, reduced total LH content/well, an effect which was more pronounced with GnRH agonist-suppressed cells (−44%; P<0·001) than with control cells (−14%, P<0·01). Whereas in control cells activin had no significant effect on any aspect of FSH production examined, in GnRH agonist-treated cells activin enhanced basal FSH release, residual cell content and total FSH content/well (P<0·001). Altering GnRH receptor status also modified the LH response to activin. With control cells activin increased basal release (P<0·001), decreased GnRH-induced release (P<0·001) and increased total LH content/well (P<0·001). With GnRH agonist-treated cells, however, activin had a uniform inhibitory effect on each aspect of LH production examined (P<0·001 in each case). It was concluded that desensitization of ovine gonadotrophs to GnRH by chronic agonist treatment results in a paradoxical enhancement of FSH output in vitro but has little effect on the responsiveness of the cells (in terms of gonadotrophin release and content) to either inhibin or oestradiol. In contrast, GnRH agonist treatment leads to qualitative changes in cellular reponsiveness to activin. Journal of Endocrinology (1994) 140, 483–493


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuman Wang ◽  
Aihua Wang ◽  
Yu Zhang ◽  
Kejing Zhu ◽  
Xiong Wang ◽  
...  

Abstract Background Prolactinoma is a functional pituitary adenoma that secretes excessive prolactin. Dopamine agonists (DAs) such as bromocriptine (BRC) are the first-line treatment for prolactinomas, but the resistance rate is increasing year by year, creating a clinical challenge. Therefore, it is urgent to explore the molecular mechanism of bromocriptine resistance in prolactinomas. Activation of the P38 MAPK pathway affects multidrug resistance in tumours. Our previous studies have demonstrated that inhibiting MAPK14 can suppress the occurrence of prolactinoma, but the role of MAPK11/12/13/14 (p38 MAPK) signalling in dopamine agonist-resistant prolactinomas is still unclear. Methods A prolactinoma rat model was established to determine the effect of bromocriptine on MAPK11/12/13/14 signalling. DA-resistant GH3 cells and DA-sensitive MMQ cells were used, and the role of MAPK11/12/13/14 in bromocriptine-resistant prolactinomas was preliminarily verified by western blot, RT-qPCR, ELISA, flow cytometry and CCK-8 experiments. The effects of MAPK11 or MAPK14 on bromocriptine-resistant prolactinomas were further verified by siRNA transfection experiments. Results Bromocriptine was used to treat rat prolactinoma by upregulating DRD2 expression and downregulating the expression level of MAPK11/12/13/14 in vivo experiments. The in vitro experiments showed that GH3 cells are resistant to bromocriptine and that MMQ cells are sensitive to bromocriptine. Bromocriptine could significantly reduce the expression of MAPK12 and MAPK13 in GH3 cells and MMQ cells. Bromocriptine could significantly reduce the expression of MAPK11, MAPK14, NF-κB p65 and Bcl2 in MMQ but had no effect on MAPK11, MAPK14, NF-κB p65 and Bcl2 in GH3 cells. In addition, knockdown of MAPK11 and MAPK14 in GH3 cells by siRNA transfection reversed the resistance of GH3 cells to bromocriptine, and haloperidol (HAL) blocked the inhibitory effect of bromocriptine on MAPK14, MAPK11, and PRL in MMQ cells. Our findings show that MAPK11 and MAPK14 proteins are involved in bromocriptine resistance in prolactinomas. Conclusion Bromocriptine reduces the expression of MAPK11/12/13/14 in prolactinomas, and MAPK11 and MAPK14 are involved in bromocriptine resistance in prolactinomas by regulating apoptosis. Reducing the expression of MAPK11 or MAPK14 can reverse bromocriptine resistance in prolactinomas.


Sign in / Sign up

Export Citation Format

Share Document