scholarly journals Distribution of nitrogen in wheat plant in its late growth stages with regard to organic fertilisation and mineral nitrogen rate

2011 ◽  
Vol 51 (No. 12) ◽  
pp. 553-561 ◽  
Author(s):  
B. Čeh-Brežnik ◽  
A. Tajnšek

In Central Slovenia within a long term static experiment IOSDV we investigated the impact of mineral nitrogen (N) fertilisation (0, 65, 130, 195 kg/ha) on the N content and the N amount in winter wheat (larger roots, stems, spikes and leaves) in EC 81/82 and EC 90/91, employing three systems of management: farmyard manure ploughing in before forecrop maize, straw ploughing in and green manure, no organic fertilisation. At EC 81/82 the N content in larger roots was around twice as high as the N content in stems and around twice as low as the N content in spikes and leaves. There was 80% of the whole N amount in plant located in the spikes and leaves (33–168 kg/ha) in EC 81/82 and 90% in EC 90/91. Calculated N recovery from mineral fertiliser was 68–87%; it increased with the increasing N rates in the system with farmyard manure ploughing in and in the system with no organic fertilisation, but not in the system with straw ploughing in and green manure. Between EC 81/82 and EC 90/91 wheat gained from 4 to 34 kg N/ha, but there were more important translocations of N inside the plants, which were higher at higher mineral N rates. There was a significant impact of management system on the N uptake at the highest mineral N rate.

2020 ◽  
pp. 1-14
Author(s):  
Aimé J. Messiga ◽  
Xiuming Hao ◽  
Martine Dorais ◽  
Carine S. Bineng ◽  
Noura Ziadi

A greenhouse trial assessed the effects of biochar and vermicompost as partial substitutes of conventional growing media on leafy vegetables’ yields and changes of NH4+-N and NO3−-N in growing medium and leachates. Six growing media mixtures [(a) coir, (b) coir + biochar, (c) coir + vermicompost, (d) peat, (e) peat +vermicompost, (f) peat + biochar] combined with three nitrogen (N) rates [0% (0 g N·pot−1), 50% (0.5 g N·pot−1), and 100% (1.0 g N·pot−1) commercial recommendation] were arranged in a split-plot design with three replicates. On average, the yield gap between 100% N and 50% N was improved when biochar and vermicompost were used as substitutes of coir (32% and 28% vs. 49%) and peat (14% and 18% vs. 27%). The concentrations of NH4+-N in the leachates for peat + biochar varied between 17.20 and 1.00 mg·L−1. The concentrations of NO3−-N in the leachates varied between 130.0 and 1.0 mg·L−1 for coir + vermicompost, and 60 and 1.0 mg·L−1 for peat + vermicompost. The residual NO3−-N in peat + biochar growing media and the leachates did not match the changes observed for NH4+-N, and the much lower residual NH4+-N indicates possible NH4+-N retention by biochar and loss through volatilization in the early growth stages. Our results show that partial substitution of peat with biochar and coir with vermicompost maintained acceptable crop yield at 50% N due probably to N supply by vermicompost and decreased residual mineral N and loss by biochar in the leachates which could be beneficial for the environment.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1505
Author(s):  
Amritbir Riar ◽  
Gurjeet Gill ◽  
Glenn K. McDonald

Canola has a high nitrogen requirement and optimal nitrogen (N) management in environments with variable rainfall is a challenge. This study investigated the impact of timing of N as a single or split application at different growth stages on seed yield, N uptake and water-use efficiency in canola. Nitrogen rates of 100 and 200 kg ha−1 were applied after sowing when two leaves were unfolded or equally split between the rosette, green bud and first flower stages. The experiments were conducted at two sites with contrasting rainfall and a supplementary irrigation treatment at the low rainfall site, generating a third environment. Nitrogen application increased seed yield by up to 20% at a high rainfall site and by up to 77% at a medium rainfall site, but the timing of N did not significantly affect the yield response to N. Seed yield was closely associated with total dry matter production and seed m−2. N-use efficiency was influenced more by N recovery and uptake efficiency, rather than physiological efficiency, which highlights the importance of soil moisture availability and the ability of the crop to exploit soil water and N reserves. The results suggest that better use of subsoil moisture by overcoming some of the subsoil constraints may be an avenue for further improvements in yield and nitrogen-use efficiency (NUE) of canola in this environment.


1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


Soil Research ◽  
1986 ◽  
Vol 24 (1) ◽  
pp. 1 ◽  
Author(s):  
AR Mosier ◽  
WS Meyer ◽  
FM Melhuish

A study using 15N~labelled fertilizer was initiated in a lysimeter facility to quantify the amount of N assimilated by maize plants and that which remained in the soil at the end of a cropping season. Maize was planted in 0.43 m2 by 1.35 m deep intact Marah clay loam soil cores removed from an improved pasture in mid-October 1983. Two irrigation treatments, flood-impounding water on the soil for up to 72 h, and control-applying enough water to prevent plant stress without ponding, were employed. The crop was harvested in early April 1984 and the amount of fertilizer- and soil-derived N in the plant and remaining in the soil was determined. Grain yields were reduced about 33% by flood irrigation. Although about 30 kg N ha-1 more fertilizer N was lost from the flood-irrigated system, the difference in N recovery between the flood- and control-irrigated soils was not sufficient to account for the reduced grain yield. Flood-irrigated plants were less efficient in transporting fertilizer N to the seed than were control irrigation plants. The data suggest that the reduced seed yield and total N content of maize plants grown under flood irrigation was metabolically controlled rather than being derived from a difference in soil mineral N content compared with control-irrigated soils.


2013 ◽  
Vol 61 (2) ◽  
pp. 101-111 ◽  
Author(s):  
G. Berhanu ◽  
T. Kismányoky ◽  
K. Sárdi

Nutrient management practices that concurrently improve soil properties and yield are essential for sustaining barley production. This study was conducted to evaluate the impact of balanced nitrogen fertilizer application involving farmyard manure (FYM) and residue management. The experiment had a factorial arrangement of five levels of mineral N and two organic fertilizer sources. The five levels of N fertilizer were applied in three replicates in combination with each of the two organic sources and a control (without organic source). Average plant height (PH), grain yield (GY), and straw yield (SY) were significantly (P <0.05) influenced by the main effect of N application and organic source; however their interaction was insignificant. The highest grain yield (103%) was obtained with 120 kg N compared to the control. The grain yield increased by 23.4% and 44% with FYM and residue, respectively, against the untreated control.


Author(s):  
K. V. S. L. Raj Rushi ◽  
P. Prasuna Rani ◽  
P. R. K. Prasad ◽  
P. Anil Kumar

Aim: To evaluate the impact of integrated use of phosphorus on soil fertility in Bt-Cotton. Study Design: The experiment was laid out in randomized block design with three replications. Place of Study: At College Farm, Agricultural College, Bapatla, Guntur district. Methodology: After the preliminary layout, Tulasi-BG II hybrid of cotton was used as a test crop, with a spacing of 90 cm x 60 cm in the experimental site. Farmyard Manure @ 10 t ha-1 was applied 10 days prior to sowing while phosphorus solubilising bacteria @ 5 kg ha-1 was applied one day before sowing. Phosphorus was applied as per the treatments basally at sowing whereas, the recommended dose of nitrogen and potassium (120 and 60 kg ha-1, respectively) were applied in four equal splits at 20, 40, 60, and 80. Results: The treatments showed no significant influence on available nitrogen and potassium but, comparatively higher values of nitrogen and potassium were observed in organic treated plots. The available phosphorus content was markedly influenced by level of phosphorus as well as components of integration at all the crop growth stages. Highest available phosphorus was recorded on integration of maximum dose of phosphorus with Phosphorus solubilising bacteria (PSB) and Farmyard manure (FYM). The available micronutrient contents in soil did not show any marked difference among the treatments at all the stages of crop growth. Conclusion: Application of phosphorus along with Phosphorus solubilising bacteria (PSB) and Farmyard manure (FYM) can reduce the phosphorus requirement to crops as well as improves soil health.


1998 ◽  
Vol 7 (5-6) ◽  
pp. 553-567 ◽  
Author(s):  
H. KÄNKÄNEN ◽  
A. KANGAS ◽  
T. MELA

Seven field trials at four research sites were carried out to study the effect of incorporation time of different plant materials on soil mineral N content during two successive seasons. Annual hairy vetch (Vicia villosa Roth), red clover (Trifolium pratense L.), westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum) and straw residues of N-fertilized spring barley (Hordeum vulgare) were incorporated into the soil by ploughing in early September, late October and the following May, and by reduced tillage in May. Delaying incorporation of the green manure crop in autumn lessened the risk of N leaching. The higher the crop N and soil NO3-N content, the greater the risk of leaching. Incorporation in the following spring, which lessened the risk of N leaching as compared with early autumn ploughing, often had an adverse effect on the growth of the succeeding crop. After spring barley, the NO3-N content of the soil tended to be high, but the timing of incorporation did not have a marked effect on soil N. With exceptionally high soil mineral N content, N leaching was best inhibited by growing westerwold ryegrass in the first experimental year. ;


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2307
Author(s):  
Anna Nogalska ◽  
Aleksandra Załuszniewska

A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).


1991 ◽  
Vol 117 (2) ◽  
pp. 157-163 ◽  
Author(s):  
G. C. Aggarwal ◽  
N. K. Sekhon

SUMMARYThe effect of cowpea green manure (CGM) and farmyard manure (FYM) on phenological events in maize grown with different rates of nitrogen (N) was evaluated at Ludhiana, India in 1988–89 as part of a long-term experiment on sandy loam. Tasselling (T), anthesis (A), silking (S), maturity (M) and appearance of leaves were recorded in 1988 and 1989 from plots of maize manured with cowpea and FYM and grown at 0, 75 and 125 kg N/ha. Time to phenological events was calculated in terms of calendar days and growing degree units (GDU).Phenological events in maize were significantly advanced by CGM, FYM and N. The occurrence of T, A and S with CGM was earlier by 60·5, 84·5 and 114·5 GDU, respectively, than without it and the end of each of the growth stages T, A and S was advanced by 81·0, 99·0 and 78·5 GDU, respectively. Maturity was earlier than in the control by 65·0 GDU. Leaf emergence occurred earlier after organic manuring. Farmyard manure advanced development less than CGM. Changes in phenological events due to N followed the same pattern of changes as those found with organic manures. Time from sowing to onset of T, A, S and M, and the interval between T, A, S and M were significantly correlated with yield and yield-related characters. Desirable changes in the timing of phenological events are thus one of the factors contributing to the improvement in productivity caused by organic manures. Calendar day was found to be as accurate an index as GDU for evaluation of the effect of cultural practices on phenological events.


2018 ◽  
Vol 156 (2) ◽  
pp. 177-187 ◽  
Author(s):  
A. Suarez-Tapia ◽  
J. Rasmussen ◽  
I. K. Thomsen ◽  
B. T. Christensen

AbstractThe current study evaluated the effect of sowing date (early, mid-August or timely, mid-September) on two winter wheat (Triticum aestivum L.) cultivars (Hereford, Mariboss) with different rates of nitrogen (N) (0–225 kg total N/ha) applied as animal manure (AM; cattle slurry) or mineral fertilizers (N: phosphorus: potassium; NPK). Overwinter plant N uptake and soil mineral N content were determined during 2014/15, while harvest yields (grain, straw, N content) were determined during 2014/15 and 2015/16. Overwinter uptake of N was 14 kg N/ha higher in early than in timely-sown wheat. Despite very different yield levels in 2015 and 2016 harvests, the advantage of early sowing on grain yields was similar (1.1 and 0.9 t/ha); straw yield benefits were greater in 2015 (1.7 t/ha more) than in 2016 (0.4 t/ha more). In 2015 and 2016, N offtake was 35 and 17 kg N/ha higher in early than in timely-sown wheat, respectively. The mineral N fertilizer value of cattle slurry averaged 50%. Early sowing increased the apparent N recovery (ANR) for wheat regardless of nutrient source. However, ANR was substantially higher for NPK (82% in 2015; 52% in 2016) than for AM (39% in 2015; 27% in 2016). Performance of the two cultivars did not differ consistently with respect to the effect of early sowing on crop yield, N concentration and offtake, or ANR. Within the north-west European climatic region, moving the sowing time of winter wheat from mid-September to mid-August provides a significant yield and N offtake benefit.


Sign in / Sign up

Export Citation Format

Share Document