Early sowing increases nitrogen uptake and yields of winter wheat grown with cattle slurry or mineral fertilizers

2018 ◽  
Vol 156 (2) ◽  
pp. 177-187 ◽  
Author(s):  
A. Suarez-Tapia ◽  
J. Rasmussen ◽  
I. K. Thomsen ◽  
B. T. Christensen

AbstractThe current study evaluated the effect of sowing date (early, mid-August or timely, mid-September) on two winter wheat (Triticum aestivum L.) cultivars (Hereford, Mariboss) with different rates of nitrogen (N) (0–225 kg total N/ha) applied as animal manure (AM; cattle slurry) or mineral fertilizers (N: phosphorus: potassium; NPK). Overwinter plant N uptake and soil mineral N content were determined during 2014/15, while harvest yields (grain, straw, N content) were determined during 2014/15 and 2015/16. Overwinter uptake of N was 14 kg N/ha higher in early than in timely-sown wheat. Despite very different yield levels in 2015 and 2016 harvests, the advantage of early sowing on grain yields was similar (1.1 and 0.9 t/ha); straw yield benefits were greater in 2015 (1.7 t/ha more) than in 2016 (0.4 t/ha more). In 2015 and 2016, N offtake was 35 and 17 kg N/ha higher in early than in timely-sown wheat, respectively. The mineral N fertilizer value of cattle slurry averaged 50%. Early sowing increased the apparent N recovery (ANR) for wheat regardless of nutrient source. However, ANR was substantially higher for NPK (82% in 2015; 52% in 2016) than for AM (39% in 2015; 27% in 2016). Performance of the two cultivars did not differ consistently with respect to the effect of early sowing on crop yield, N concentration and offtake, or ANR. Within the north-west European climatic region, moving the sowing time of winter wheat from mid-September to mid-August provides a significant yield and N offtake benefit.

1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


Soil Research ◽  
1986 ◽  
Vol 24 (1) ◽  
pp. 1 ◽  
Author(s):  
AR Mosier ◽  
WS Meyer ◽  
FM Melhuish

A study using 15N~labelled fertilizer was initiated in a lysimeter facility to quantify the amount of N assimilated by maize plants and that which remained in the soil at the end of a cropping season. Maize was planted in 0.43 m2 by 1.35 m deep intact Marah clay loam soil cores removed from an improved pasture in mid-October 1983. Two irrigation treatments, flood-impounding water on the soil for up to 72 h, and control-applying enough water to prevent plant stress without ponding, were employed. The crop was harvested in early April 1984 and the amount of fertilizer- and soil-derived N in the plant and remaining in the soil was determined. Grain yields were reduced about 33% by flood irrigation. Although about 30 kg N ha-1 more fertilizer N was lost from the flood-irrigated system, the difference in N recovery between the flood- and control-irrigated soils was not sufficient to account for the reduced grain yield. Flood-irrigated plants were less efficient in transporting fertilizer N to the seed than were control irrigation plants. The data suggest that the reduced seed yield and total N content of maize plants grown under flood irrigation was metabolically controlled rather than being derived from a difference in soil mineral N content compared with control-irrigated soils.


2003 ◽  
Vol 83 (5) ◽  
pp. 497-505 ◽  
Author(s):  
A. N’Dayegamiye ◽  
S. Huard ◽  
Y. Thibault

Mixed paper mill sludges are an important source of N for crop production. An estimate of direct and residual N recovery is necessary for their efficient management. A 3-yr field study (1997-1999) was conducted in central Quebec, Canada, to evaluate mixed paper mill sludges (PMS) effects on corn (Zea mays L.) yields and N nutrition, N recovery and N efficiency. The effects of PMS on soil NO3-N and total N levels were also determined. The study was situated on a silt loam Baudette soil (Humic Gleysol). The treatments included 3 PMS rates (30, 60 and 90 t ha-1 on wet basis) applied alone or in combination with N fertilizer (90 and 135 kg N ha-1, respectively, for 60 and 30 t ha-1). Treatments also included a control without PMS or N fertilizer, and a complete mineral N fertilizer (180 kg N ha-1) as recommended for corn. The previous plots were split beginning with the second year of the experiment, for annual and biennal PMS applications. Similar treatments as above were made on an adjacent site to evaluate N recovery under climatic conditions in 1999. In all years, PMS applied alone significantly increased corn yields by 1.5–5 t ha-1, compared to the unfertilized control. However, corn yields and N uptake were highest from the application of PMS in combination with N fertilizer. Biennial PMS applications at 60 to 90 ha-1 significantly increased corn yields and N uptake, which suggest high PMS residual effect; however, these increases were lower than those obtained with annual PMS applications. The N efficiency varied in 1997 from 13.0 to 15.4 kg grain kg N-1 for mineral N fertilizer and ranged from 3 to 13.7 kg grain kg N-1 for PMS, decreasing proportionally to increasing PMS rates. Apparent N recovery ranged from 1 3 to 19% in 1997 and from 10 to 14% in the residual year (1998), compared to 30 and 49%, respectively, for mineral N fertilizer. Depending on the PMS rate, N recovery varied from 13 to 21% in 1999. The results indicate high N supplying capacity and high r esidual N effects of PMS, which probably influenced corn yields and N nutrition. Annual PMS applications alone or combined with mineral N fertilizer had no significant effect on soil NO3-N and total N levels. This study demonstrates that application of low PMS rate (30 t ha-1) combined with mineral N fertilizer could achieve high agronomic, economic and environmental benefits on farms. Key words: Mixed paper mill sludges, corn yields, N uptake, N efficiency, residual effects, soil N


2008 ◽  
Vol 18 (1) ◽  
pp. 57 ◽  
Author(s):  
T. TONTTI ◽  
A. NYKÄNEN ◽  
M. KUISMA

Two field experiments, conventional grass ley and organic grass-clover ley, were established with barley as a nurse crop in spring 2000 and given either low or high fertilization with mineral fertilizer (Mineral) or composts. The compost types were municipal biowaste (Biowaste), biowaste + sewage sludge (BioSludge) and cattle manure (Manure). Plant yields and nitrogen (N) uptakes were measured for three years and efficiency of N utilization was estimated. In single application of compost, the total N was mainly in organic form and less than 10% was in inorganic form. Along with increasing amount of inorganic N applied in compost, the yield, N uptake and N recovery increased during the application year. The highest compost N recovery in the application year was 12%, found with Biowaste. In the following years the highest N recovery was found where the lowest total N had been applied. Clover performance was improved in the organic grass-clover ley established with BioSludge fertilization, producing total ley yield comparable with Manure compost. High total N application in composts caused high N surplus and low N use efficiency over three years. Generally, moderate compost fertilization is suitable for ley crops when supplemented with mineral N fertilizer or clover N fixation.;


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2307
Author(s):  
Anna Nogalska ◽  
Aleksandra Załuszniewska

A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
G. L. Velthof ◽  
R. P. J. J. Rietra

Processed manure can be an alternative source of nutrients for untreated manure and mineral fertilizers. Mineral concentrates (MCs) are derived from reversed osmosis of the liquid fraction of separated pig slurries. The emissions of ammonia (NH3) and nitrous oxide (N2O) from different (processed) manures and fertilizers were tested in an incubation experiment and a greenhouse experiment with grass as a test crop. Dry matter yields and nitrogen (N) uptake were also determined in the greenhouse experiment. Incorporation into the soil decreased on NH3 emission but increased N2O emission for all nitrogen products (mineral fertilizer, untreated slurry, MC, and solid fraction of separated slurry). Incorporation of both MC, slurries, and mineral fertilizers increased N2O emission in the incubation experiment. The lowest apparent N recovery (ANR) in the pot experiment with grass was obtained for incorporated pig slurry (30–39%) and surface-applied MC (33–38%), while the highest ANRs were obtained for liquid ammonium nitrate (45–53%) and acidified MC (43–55%). It is concluded that MCs have a similar N fertilizer value as mineral N fertilizers if NH3 emission is reduced by incorporation or acidification.


2007 ◽  
Vol 42 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Segundo Sacramento Urquiaga ◽  
Luiz Alexandre Peternelli ◽  
Tatiana Pires Barrella ◽  
...  

The objective of this work was to determine the effect of incorporation timing of the velvet bean (Stizolobium cinereum) (GM) on both organic broccoli yield and N status. Mineral N content in the soil, biologically fixed N recovery by broccoli, GM biomass decomposition and N release kinetics were also determined. Plots were fertilized with 12 Mg ha-1 of organic compost and received GM either at 0, 15, 30 or 45 days after transplant. Other treatments were compost (12 or 25 Mg ha-1), GM, mineral fertilizers and control (no fertilizer). The data were collected in four completely randomized blocks. GM decomposition increased mineral N content in soil as rapidly as mineral fertilizer or the supply of 25 Mg ha-1 of compost. The N half-life in GM (24 days) is smaller than the mass half-life (35 days) and the biological fixation contributed with 23.6% of N present in the aboveground biomass of broccoli. The result suggests a higher synchrony between the crop relative growth rate and N release from the GM when incorporated at crop early growth stage. The incorporation of GM until 15 days after transplanting replaces 50% of the highest compost dose, without yield loss.


2008 ◽  
Vol 19 (4) ◽  
pp. 327 ◽  
Author(s):  
J. UUSI-KÄMPPÄ ◽  
P.K. MATTILA

As the livestock numbers on Finnish dairy farms have increased and most fields on dairy farms are under grass, it has become common to spread cattle slurry over grasslands. To estimate environmental effects of recurrent slurry applications, a 5-year field study was performed to compare nitrogen (N) losses to water and ammonia losses to air by volatilization, when cattle slurry was either surface broadcast or injected into clay soil after grass cuttings. Slurry was spread on the grass in summer (1996–1997) or both in summer and autumn (1998–2000). Biomass N uptake before grass harvesting and amount of soil mineral N in spring and autumn were measured and field N balances were calculated. Despite cool weather, up to one third of the ammonium N of broadcast slurries was lost through ammonia volatilization after application in autumn, but injection effectively prevented losses. The mean surface runoff losses of total N were negligible (0.3–4.6 kg ha-1 yr-1) with the highest loss of 13 kg ha-1 yr-1 measured after slurry broadcasting to wet soil in autumn and followed with heavy rains. A substantial part (24–55%) of the applied mineral N was not recovered by the foregoing measurements.;


1994 ◽  
Vol 49 (5-6) ◽  
pp. 343-351 ◽  
Author(s):  
Bernhard Epping ◽  
Alexander P. Hansen ◽  
Bahman Djalali ◽  
Peter Martin

Abstract Four varieties of P. vulgaris L. were tested for their symbiotic nitrogen fixation effectivity in combination with nine different strains of Rhizobium leguminosarum bv. phaseoli and Rhizobium tropici. Plants were grown under controlled conditions and harvested 23 days after planting. Acetylene reducing activity, total N-content and dry weight of individual plant components were determined. Significant differences due to plant x bacterium interaction were assessed by ANOVA, especially for the total nodule mass per plant and the acetylene reducing activity per nodule dry weight. Data for acetylene reducing activity per plant correlated highly with the corresponding data for the total N-content. The comparison of the total N-content in symbiotically grown plants, lacking supply of mineral N, with plants luxuriously supplied with mineral N (relative N-accumulation rate) revealed high values (between 60% and 70% of maximal N-uptake) for some symbiotically active plant/bacterium combinations for this early developmental stage of the symbiosis N2 fixation potential for such symbioses.


Biochar ◽  
2021 ◽  
Author(s):  
Jing Peng ◽  
Xiaori Han ◽  
Na Li ◽  
Kun Chen ◽  
Jinfeng Yang ◽  
...  

AbstractCombined application of biochar with fertilizers has been used to increase soil fertility and crop yield. However, the coupling mechanisms through which biochar improves crop yield at field scale and the time span over which biochar affects carbon and nitrogen transformation and crop yield are still little known. In this study, a long-term field trial (2013–2019) was performed in brown soil planting maize. Six treatments were designed: CK—control; NPK—application of chemical fertilizers; C1PK—low biochar without nitrogen fertilizer; C1NPK, C2NPK and C3NPK—biochar at 1.5, 3 and 6 t ha−1, respectively, combined with chemical fertilizers. Results showed that the δ15N value in the topsoil of 0–20 cm layer in the C3NPK treatment reached a peak of 291 ‰ at the third year (2018), and demonstrated a peak of 402 ‰ in the NPK treatment in the initial isotope trial in 2016. Synchronously, SOC was not affected until the third to fourth year after biochar addition, and resulted in a significant increase in total N of 2.4 kg N ha−1 in 2019 in C3NPK treatment. During the entire experiment, the 15N recovery rates of 74–80% were observed highest in the C2NPK and C3NPK treatments, resulting in an annual increase in yields significantly. The lowest subsoil δ15N values ranged from 66‰ to 107‰, and the 15N residual rate would take 70 years for a complete decay to 0.001% in the C3NPK. Our findings suggest that biochar compound fertilizers can increase C stability and N retention in soil and improve N uptake by maize, while the loss of N was minimized. Biochars, therefore, may have an important potential for improving the agroecosystem and ecological balance. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document