scholarly journals Nitrogen supply through transpiration mass flow can limit nitrogen nutrition of plants

2011 ◽  
Vol 49 (No. 10) ◽  
pp. 473-479 ◽  
Author(s):  
F. Plhák

Pea (Pisum sativum L.), sunflower (Helianthus annuus L.) and maize (Zea mays L.) plants were cultivated for 10 days in hydroponics at 1mM and 7mM nitrate or ammonium concentrations at regulated pH 6 and ambient CO2 level. Plant growth, content of total N and both ions in plant tissues, uptake of water and both N ions were evaluated, N uptake related to transpiration mass flow and to diffusion supply was calculated. Pea and sunflower preferred nitrate nutrition while maize plants used both N ions. The content of total N as well as of both N ions in plant tissues increased with N level with some exceptions. The uptake of both N ions related to transpiration mass flow was dependent on transpiration rate and N ion concentration. At a 1mM N concentration the uptake of N ions related to transpiration mass flow was low and reached in maize up to 16 times, in sunflower 11 times and in pea 2–3 times lower values in comparison with diffusion supply. At a 7mM N concentration N uptake in pea plants was totally supplied by transpiration mass flow, in sunflower plants the ratio of N supply related to transpiration mass flow amounted to 50% and in maize plants N supply through diffusion prevailed, amounting to 70–80%. These results explicate N starvation at low N supply that can intensify at elevated CO2 causing decreased stomatal diffusion.

HortScience ◽  
2001 ◽  
Vol 36 (7) ◽  
pp. 1252-1259 ◽  
Author(s):  
A. Bar-Tal ◽  
B. Aloni ◽  
L. Karni ◽  
R. Rosenberg

The objective of this research was to study the effects of N concentration and N-NO3: N-NH4 ratio in the nutrient solution on growth, transpiration, and nutrient uptake of greenhouse-grown pepper in a Mediterranean climate. The experiment included five total N levels (0.25 to 14 mmol·L-1, with a constant N-NO3: N-NH4 ratio of 4) and five treatments of different N-NO3: N-NH4 ratios (0.25 to 4, with a constant N concentration of 7 mmol·L-1). Plants were grown in an aero-hydroponic system in a climate-controlled greenhouse. The optimum N concentrations for maximum stem and leaf dry matter (DM) production were in the range of 8.0 to 9.2 mmol·L-1. The optimum N-NO3: N-NH4 ratio for maximal stem DM production was 3.5. The optimum value of N concentration for total fruit DM production was 9.4 mmol·L-1. Fruit DM production increased linearly with increasing N-NO3: N-NH4 ratio in the range studied. The N concentration, but not N source, affected leaf chlorophyll content. Shorter plants with more compacted canopies were obtained as the N-NO3: N-NH4 ratio decreased. The effect of N concentration on transpiration was related to its effect on leaf weight and area, whereas the effect of a decreasing N-NO3: N-NH4 ratio in reducing transpiration probably resulted from the compacted canopy. Nitrogen uptake increased as the N concentration in the solution increased. Decreasing the N-NO3: N-NH4 ratio increased the N uptake, but sharply decreased the uptake of cations, especially Ca.


2012 ◽  
Vol 39 (9) ◽  
pp. 795 ◽  
Author(s):  
Suraphon Thitithanakul ◽  
Gilles Pétel ◽  
Michel Chalot ◽  
François Beaujard

Tree nutrient research concentrated on endogenous C and N remobilisation in spring has neglected to acknowledge the possibilities of significant effects of N uptake before bud break, especially on the quality of regrowth and N reserve remobilisation. To investigate this subject, experimental studies were performed on young poplars (Populus tremula × Populus alba, clone INRA 717–1B4) grown with a controlled nutrient supply: (i) without N, ‘control’; (ii) N supplied throughout the course of the experiment, ‘N-supply’; and (iii) N supplied only before bud break, ‘N-pulse’. Results confirm the hypothesis that poplar scions can significantly take up nitrate before bud break, amounting to ~34% of the total N stored the previous year. After bud break, emerging leaves restart the sap flow, which increased nitrate uptake to support the regrowth. N-pulse and N-supply treatments were found to have significant effects shortly after a growth period, i.e. by increasing N content of all tissues (e.g. 37 and 81% in new shoots respectively), leaf area (18 and 29%) and specific leaf area (20 and 35%). Therefore, results confirm the hypothesis that early N supply plays a significant role in the N status and N remobilisation involved in the spring regrowth of young trees.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yushi Zhang ◽  
Yubin Wang ◽  
Churong Liu ◽  
Delian Ye ◽  
Danyang Ren ◽  
...  

Increasing use of plant density or/and nitrogen (N) application has been introduced to maize production in the past few decades. However, excessive planting density or/and use of fertilizer may cause reduced N use efficiency (NUE) and increased lodging risks. Ethephon application improves maize lodging resistance and has been an essential measure in maize intensive production systems associated with high plant density and N input in China. Limited information is available about the effect of ethephon on maize N use and the response to plant density under different N rates in the field. A three-year field study was conducted with two ethephon applications (0 and 90 g ha−1), four N application rates (0, 75, 150, and 225 kg N ha−1), and two plant densities (6.75 plants m−2 and 7.5 plants m−2) to evaluate the effects of ethephon on maize NUE indices (N agronomic efficiency, NAE; N recovery efficiency, NRE; N uptake efficiency, NUpE; N utilization efficiency, NUtE; partial factor productivity of N, PFPN), biomass, N concentration, grain yield and N uptake, and translocation properties. The results suggest that the application of ethephon decreased the grain yield by 1.83–5.74% due to the decrease of grain numbers and grain weight during the three experimental seasons. Meanwhile, lower biomass, NO3- and NH4+ fluxes in xylem bleeding sap, and total N uptake were observed under ethephon treatments. These resulted in lower NAE and NUpE under the ethephon treatment at a corresponding N application rate and plant density. The ethephon treatment had no significant effects on the N concentration in grains, and it decreased the N concentration in stover at the harvesting stage, while increasing the plant N concentration at the silking stage. Consequently, post-silking N remobilization was significantly increased by 14.10–32.64% under the ethephon treatment during the experimental periods. Meanwhile, NUtE significantly increased by ethephon.


1973 ◽  
Vol 9 (2) ◽  
pp. 113-120 ◽  
Author(s):  
M. J. Jones

SUMMARYMaize was grown for three years at three levels of nitrogen, 56, 112 and 224 kg. N ha.−1, involving altogether nine different timing and splitting treatments. Measurements were made of grain yield, plant nitrogen status and total-N-uptake, and, in one year, movement of nitrate-N in control plot soils. Where only 56 kg. N ha.−1was applied, its time of application made very little difference to yield; at higher rates of nitrogen an unsplit application as late as seven weeks was very inefficient, but only at the highest rate did a split application give any appreciable yield increase over an unsplit application to the seed bed. Consideration of the soil nitrate-N data and the long-term pattern of rainfall distribution leads to the conclusion that leaching is unlikely to be a serious problem in the nitrogen nutrition of early-planted maize.


HortScience ◽  
2001 ◽  
Vol 36 (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
A. Bar-Tal ◽  
B. Aloni ◽  
L. Karni ◽  
J. Oserovitz ◽  
A. Hazan ◽  
...  

Blossom-end rot (BER) is one of the major physiological disorders of green-house bell pepper (Capsicum annuum L.). The objective of the present work was to study the effects of the solution N concentration and N-NO3: N-NH4 ratio on fruit yield and the incidence of BER and other fruit-quality traits of greenhouse-grown bell pepper in a Mediterranean climate. Three experiments were conducted: Expt. 1 included five total N concentrations (0.25 to 14 mmol·L-1, with a constant N-NO3: N-NH4 ratio of 4); Expt. 2 included five treatments of different NO3: NH4 molar ratios (0.25 to 4, with a constant N concentration of 7 mmol·L-1); and Expt. 3 included three treatments of different NO3: NH4 molar ratios (1.0, 3.0 and 9.0, with a constant N concentration of 7 mmol·L-1). Plants were grown in an aero-hydroponics system in Expts. 1 and 2 and in tuff medium in Expt. 3, in greenhouses in Israel. The optimal values of N concentration for total fruit yield and for high fruit quality (marketable) were 9.3 and 8.3 mmol·L-1, respectively. The total and high-quality fruit yields both increased with increasing N-NO3: N-NH4 ratio in the range studied. The total and high-quality fruit yields both decreased sharply as the NH4 concentration in the solution increased above 2 mmol·L-1. The increase in the NH4 concentration in the solution is the main cause of the suppression of Ca concentration in the leaves and fruits and the increased incidence of BER. The occurrence of flat fruits also increased with increasing NH4 concentration in the solution.


HortScience ◽  
1990 ◽  
Vol 25 (7) ◽  
pp. 767-769 ◽  
Author(s):  
Wilton P. Cook ◽  
Douglas C. Sanders

The effects of fertilizer placement and soil moisture level on soil N movement, uptake, and use by tomato plants (Lycopersicon esculentum Mill) grown with drip irrigation and plastic mulch were evaluated at two locations on two types of sandy soils. Broadcast or band fertilizer placement had no effect on fruit size, fruit number, or total yield. Fruit size was increased at one location, and the incidence of blossom-end rot was decreased by increased frequency of irrigation. Nitrate-N distribution within the bed was not affected by initial N placement. In the soil with a rapid infiltration rate, NO3-N levels in the center of the bed were always low, with highest concentration observed in the areas of the bed most distant from the drip tube. In the soil with the slower infiltration rate, NO3-N concentrations were more uniform throughout the bed, with highest concentrations in the bed center: Increasing soil moisture levels (–20 kPa vs. –30 kPa) resulted in increased leaching and reduced NO3-N concentration throughout the bed. Foliage N concentration was not affected by N placement, but decreased seasonally. Total N uptake by the above-ground portion of the plants was not affected by fertilizer placement or soil moisture level.


1996 ◽  
Vol 121 (1) ◽  
pp. 105-114 ◽  
Author(s):  
John D. Lea-Cox ◽  
James P. Syvertsen

We examined how N supply affected plant growth and N uptake, allocation and leaching losses from a fine sandy soil with four Citrus rootstock species. Seedlings of `Cleopatra' mandarin (Citrus reticulata Blanco) and `Swingle' citrumelo (C. paradisi × P. trifoliata) were grown in a glasshouse in 2.3-liter pots of Candler fine sand and fertilized weekly with a complete nutrient solution containing 200 mg N/liter (20 mg N/week). A single application of 15NH415NO3(17.8% atom excess 15N) was substituted for a normal weekly N application when the seedlings were 22 weeks old (day O). Six replicate plants of each species were harvested at 0.5, 1.5, 3.5, 7, 11, and 30 days after 15N application. In a second experiment, NH4 NO3 was supplied at 18,53, and 105 mg N/week to 14-week-old `Volkamer' lemon (C. volkameriana Ten. & Pasq.) and sour orange (C. aurantium L.) seedlings in a complete nutrient solution for 8 weeks. A single application of 15NH415NO3 (23.0% 15N) was substituted at 22 weeks (day 0), as in the first experiment, and seedlings harvested 3,7, and 31 days after 15N application. Nitrogen uptake and partitioning were similar among species within each rate, but were strongly influenced by total N supply and the N demand by new growth. There was no 15N retranslocation to new tissue at the highest (105 mg N/week) rate, but N supplies below this rate limited plant growth without short-term 15N reallocation from other tissues. Leaf N concentration increased linearly with N supply up to the highest rate, while leaf chlorophyll concentration did not increase above that at 53 mg N/week. Photosynthetic CO2 assimilation was not limited by N in this study; leaf N concentration exceeded 100 mmol·m-2 in all treatments. Thus, differences in net productivity at the higher N rates appeared to be a function of increased leaf area, but not of leaf N concentration. Hence, N use efficiency decreased significantly over the range of N supply, whether expressed either on a gas-exchange or dry weight basis. Mean plant 15N uptake efficiencies after 31 days decreased from 60% to 47% of the 15N applied at the 18,20, and 53 mg N/week rates to less than 33% at the 105 mg N/week rate. Leaching losses increased with N rate, with plant growth rates and the subsequent N requirements of these Citrus species interacting with residual soil N and potential leaching loss.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2354
Author(s):  
Asher Bar-Tal ◽  
Escain Kiwonde ◽  
Beeri Kanner ◽  
Ido Nitsan ◽  
Raneen Shawahna ◽  
...  

The overall aim of this research was to optimize nitrogen (N) fertilization of plants under desalinated water and a wide range of chloride concentrations for high yield while minimizing downward leaching of nitrate and chloride. The response of two crops, lettuce and potato, to N concentration (CN) in the irrigating solution using desalinated and wide range of Cl concentrations (CCL) was evaluated. The yields of both crops increased with N up to optimal CN of the irrigating solution and decreased as CCL increased. Optimal CN in both crops was higher in the desalinated water than high CCL treatments. N uptake by plants increased with CN in the irrigating solution and the highest uptake was at low CCL. As expected, N fertilization suppressed Cl accumulation in plant tissues. Drainage of N and Cl increased with increase in CCL in the irrigating solution and N fertilization above optimal CN resulted in steep rise in downward N leaching. The overall conclusion is that as water quality is improved through desalination, higher N supply is required for high yields with less groundwater pollution by downward leaching of N and Cl.


HortScience ◽  
1991 ◽  
Vol 26 (3) ◽  
pp. 250-252 ◽  
Author(s):  
Wilton P. Cook ◽  
Douglas C. Sanders

Studies were conducted to determine the effect of N application frequency through drip irrigation on soil NO3-N movement in the bed profile and on yield and N uptake by tomato plants (Lycopersicon esculentum Mill. `Sunny') at two locations. Increasing N application frequency resulted in increased yields at Clayton, N. C., but not at Charleston, S.C. The number of fruit produced was not affected by N treatment at either location, but fruit size increased with increasing N application frequency at Clayton. Foliage N concentration decreased seasonally, but neither foliage N concentration nor total N content of the above-ground portion of the plants was affected by N application frequency. Regardless of N application frequency, NO3-N concentrations within the raised bed decreased with time due to plant uptake and leaching. Nitrogen levels declined most rapidly in the area closest to the drip tube.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 543g-544
Author(s):  
Raul I. Cabrera ◽  
Richard Y. Evans ◽  
J.L. Paul

N uptake by greenhouse roses is out of phase with flower shoot elongation, such that N uptake is highest when shoots are not growing and lowest when shoots are elongating rapidly. Isotopically labelled 15N fertilizer was supplied at different stages of one flowering cycle to `Royalty' rose plants growing in a static nutrient solution system to study the partitioning of recently-absorbed N and the dynamics of N partitioning. After a two-day exposure, whole plants were harvested, separated into old and new leaves, stems, and roots, and analyzed for total N and 15N enrichment. During rapid shoot elongation, N uptake by roots supplied 16 to 36% of shoot N demand. The remaining N came from other organs, particularly old stems and leaves. The increased N uptake later in the flowering cycle was sufficient to meet shoot N demand and replenish the N supply in old foliage and woody tissues. These organs continued to accumulate N until the subsequent bud break, when this N became available for the next cycle of flowering shoot growth.


Sign in / Sign up

Export Citation Format

Share Document