scholarly journals Rhizobia associated with neotropical tree Centrolobium tomentosum used in riparian restoration

2008 ◽  
Vol 54 (No. 11) ◽  
pp. 498-508 ◽  
Author(s):  
M.C. Pagano

<I>Centrolobium tomentosum</I> is a tropical legume tree indicated for functional and structural restoration of riparian areas. This study was conducted to characterize the rhizobia isolated from nodules of <I>C. tomentosum in situ</I> and to determine their capacity of renodulation, in an experimental area of land rehabilitation in the Rio Doce valley. Nodulation potential to inoculation with 2 selected fast-growing <I>Rhizobium</I> strains separately and a mixed inoculum of arbuscular mycorrhizal fungi was evaluated by the use of antibiotics resistance. Flood disturbance were observed not to affect renodulation by fast-growing strains. DNA fingerprinting RAPD (random amplified polymorphic DNA) and lipopolysaccharides (LPS) profiles were used to examine molecular relationships among field isolates, inoculants and reference strains. Maximal renodulation was exhibited by strain BHCBAb1 after 24 months after transplantation. <I>Centrolobium tomentosum</I> forms symbiosis with fast- and slow-growing <I>Rhizobium</I> strains, and it is suggested that their nursery culture could be improved by inoculation of selected strain under low nitrogen-input conditions.

2008 ◽  
Vol 45 (8) ◽  
pp. 1155-1165 ◽  
Author(s):  
Pascale M.A. Seddas ◽  
Christine Arnould ◽  
Marie Tollot ◽  
Cecilia M. Arias ◽  
Vivienne Gianinazzi-Pearson

CERNE ◽  
2017 ◽  
Vol 23 (3) ◽  
pp. 377-385
Author(s):  
Nicolás Marro ◽  
Florencia Soteras ◽  
Noelia Cofré ◽  
Ignacio Ibarra ◽  
Romina Torres ◽  
...  

ABSTRACT Knowledge about tree production practices is essential to support forest restoration projects, but is still lacking for many tree species. Maytenus boaria is a neotropical tree distributed across the temperate and subtropical South American mountains. In central Argentina, it is mainly restricted to the most preserved forest remnants. Attempts to plant this species have had little success due to difficulties in seedling production and low seedling survival. We set up four trials aiming to identify the constraints of seedling production and outplanting. Under greenhouse conditions, we evaluated (i) pre-germination treatments and (ii) seedling response to inoculation with arbuscular mycorrhizal fungi (AMF). In the field, we planted M. boaria saplings as well as saplings of the most abundant tree in our study site and recorded (iii) survival and height for 10 years. Finally, (iv) we quantified natural recruitment in an attempt to determine M. boaria regeneration niche. Germination varied from 13.1 to 29.2% among treatments. Depulped seeds stratified at 5 ºC showed the highest germination (29.2%). Shoot phosphorus concentration in AMF-treated seedlings was significantly higher (45%) than in non-inoculated seedlings. Survival of M. boaria saplings was similar to that of the most abundant tree in our study site, but their lower height suggested limited growth. We recorded low abundance of M. boaria seedlings in the field; therefore, we were unable to identify the characteristics of its regeneration niche. Reforestation activities should include seed depulping and stratification at 5 ºC to improve germination. The capacity of AMF to enhance nutrition should be evaluated under field conditions.


2007 ◽  
Vol 23 (3) ◽  
pp. 369-372 ◽  
Author(s):  
A. Elizabeth Arnold ◽  
Bettina M. J. Engelbrecht

Drought strongly influences plant phenology, growth and mortality in tropical forests, thereby shaping plant performance, population dynamics and community structure (Bunker & Carson 2005, Condit et al. 1995). Microbial symbionts of plants profoundly influence host water relations (Lösch & Gansert 2002), but are rarely considered in studies of tropical plant physiology. In particular, plant–fungus associations, which are ubiquitous in plant communities and especially common in tropical forests, play important and varied roles in plant water status. Fungal pathogens associated with roots, vascular tissue and foliage may interfere with water uptake and transport, increase rates of foliar transpiration, and induce xylem embolism and tissue death (Agrios 1997). In contrast, rhizosphere mutualists such as ecto- and arbuscular mycorrhizal fungi may benefit hosts by increasing surface area for water uptake, enhancing stomatal regulation of water loss, and increasing root hydraulic conductivity (Auge 2001, Lösch & Gansert 2002).


2020 ◽  
Vol 14 (3) ◽  
pp. 1065-1073
Author(s):  
Hadou Haro ◽  
Kadidia Semde ◽  
Kadidiata Bahadio ◽  
Kadidia B. Sanon

Au Burkina Faso, l’élevage occupe plus de 80% des ménages ruraux et constitue le troisième produit d’exportation après l’or et le coton. De type extensif, cet élevage est basé essentiellement sur l’exploitation des ressources naturelles. Ainsi, il doit s’adapter aux grandes variations saisonnières et interannuelles des ressources en biomasse végétale et en eau. Or les aléas climatiques, l’étendue et la qualité des pâturages, de même que les contraintes rendent l’activité pastorale souvent précaire. C’est ainsi que cette étude a été initiée dans le but de contribuer à améliorer la production fourragère. Dans cette étude, Mucuna pruriens a été cultivé en serre et inoculé avec deux inocula de champignons mycorhiziens arbusculaires. Les paramètres de croissance ont été mesurés à 30 et 60 jours après semis. La biomasse aérienne, racinaire et totale a été évaluée à 60 jours après semis. Les résultats montrent une amélioration de la croissance en hauteur du mucuna de 225,76%, de la biomasse aérienne de 56,79%, la biomasse racinaire de 70% et la biomasse totale de 61,16% par rapport au témoin non inoculé. Cette étude a montré des résultats intéressants et mérite d’être approfondie par des essais in situ tout en étendant l’étude sur les inoculations rhizobiennes.Mots clés : Mucuna, inoculation mycorhizienne, champignons mycorhiziens arbusculaires.   English Title: Effect of mycorrhizal inoculation with arbuscular mycorrhizal fungi strains on Mucuna pruriens (L.) DC growth under controlled conditionIn Burkina Faso, breeding occupies more than 80% of rural households and is the third export product after gold and cotton. Extensive type, this breeding is based essentially on the exploitation of natural resources. Thus, it must adapt to large seasonal and interannual variations in plant biomass and water resources. Climatic hazards, the extent and quality of pastures, as well as constraints make pastoral activity often precarious. Therefore, this study was initiated with the aim of helping to improve forage production. In this study, Mucuna pruriens was grown in a greenhouse and inoculated with two inocula of arbuscular mycorrhizal fungi. The growth parameters were measured at 30 and 60 days after sowing. Shoot, root and total biomass was evaluated at 60 days after sowing. The results show an improvement in the height growth of mucuna by 225.76%, shoot biomass by 56.79%, root biomass by 70% and total biomass by 61.16% compared to the control. This study showed interesting results and deserves to be deepened by in situ tests while extending the study of rhizobial inoculations. Keywords: Mucuna, mycorrhizal inoculation, arbuscular mycorrhizal fungi


2001 ◽  
Vol 61 (4) ◽  
pp. 693-700 ◽  
Author(s):  
B. A. SANTOS ◽  
L. C. MAIA ◽  
U. M. T. CAVALCANTE ◽  
M. T. S. CORREIA ◽  
L. C. B. B. COELHO

The effects of mycorrhizal inoculation and increasing soil P levels on the expression of total proteins and peroxidase activity on passion fruit roots were evaluated. The experimental design was entirely at random, with four treatments of inoculation (a - control; b - Gigaspora albida; c - Scutellospora heterogama; d - mixture of G. albida, G. margarita, S. heterogama, and Glomus clarum) × three levels of soil P (4, 11, and 30 mg/dm³ of soil), each with three replicates. Plants were harvested 70 days after inoculation, when root colonization, shoot P level, protein content, and enzymatic activity of peroxidase (PAGE - 7%) on root extract were evaluated. Regarding protein, there was no significant difference among the treatments, except between those roots receiving mixed inoculum and 11 mg P/dm³ of soil. Effect of P on protein concentration, when compared with the inoculation effect was observed. For peroxidase, there was an eletrophoretic band common to all treatments (rf: 0.43) and another that was absent only in noncolonized plants, grown in soil with lower P (rf: 0.46). Mycorrhizal specific bands were not present but a small decrease of intensity of bands in noncolonized plants was observed. Conversely, the control roots presented a single band (rf: 0.33) not observed in the other extracts, that may demonstrate an inhibitory effect of AMF on some host activities. The data showed the influence of P level in soil on the protein expression of roots, suggesting the influence of this nutrient on root genetic expression as well as on the mechanisms of symbiotic control/recognition.


1999 ◽  
Vol 12 (9) ◽  
pp. 785-791 ◽  
Author(s):  
Raffaella Balestrini ◽  
Silvia Perotto ◽  
Elena Gasverde ◽  
Preeti Dahiya ◽  
Lise-Lotte Guldmann ◽  
...  

The gene PsNlec1, which encodes a lectinlike glycoprotein, is strongly expressed in pea nodule tissue. Using gene-specific polymerase chain reaction (PCR) primers, in situ hybridization probes, and specific antisera derived from the PsNlec1 sequence, we investigated gene expression associated with the arbuscular mycorrhizal (AM) symbiosis of pea roots. With the use of reverse transcription (RT)-PCR and cold in situ hybridization, strong expression of the transcript was demonstrated not only in root nodules but also in mycorrhizal roots when the cells were colonized by the endomycorrhizal fungus Glomus versiforme. No transcript was detectable in uninfected pea roots. With an antiserum raised against PsNLEC-1 polypeptide, a single antigenic band (25 kDa) was observed following gel electrophoresis of extracts from mycorrhizal roots. However, the amount of antigen was apparently too low to be detected by immunogold localization in tissue sections of pea mycorrhizal roots.


Sign in / Sign up

Export Citation Format

Share Document