scholarly journals Effects of maize and winter wheat grown under different cultivation techniques on biological activity of soil

2017 ◽  
Vol 63 (No. 10) ◽  
pp. 449-454 ◽  
Author(s):  
Furtak Karolina ◽  
Gawryjołek Karolina ◽  
Gajda Anna M ◽  
Gałązka Anna

The aim of the study was to compare the activity and functional biodiversity in soil under two different cereals: common maize and winter wheat, both grown in the same pattern of cultivation techniques: conventional (to 25 cm depth) and reduced (to 10 cm depth). Soil samples for comparative analysis were collected at the same time (July 2016) at a long-term field experiment, which was carried out in 2013–2016. Soil biological activity was determined by measurement of dehydrogenases activity (DHa) with TTC (2,3,5-triphenyltetrazolium chloride) application, microbial biomass carbon (MBC) and nitrogen (MBN) content by fumigation-extraction method, and functional diversity of soil microorganisms using the Biolog EcoPlate System. The results demonstrated that the cultivation technique had a greater impact on the soil biological activity, compared to the type of cereal. Higher biological activity was found in the soil under reduced tillage in both cereals. Calculated correlations showed that DHa, MBC, MBN and acid phosphatases were positively correlated with each other. The negative correlation obtained between yield and biological parameters of activity in soil was not expected.

2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.


2008 ◽  
Vol 88 (4) ◽  
pp. 451-460 ◽  
Author(s):  
M A Bolinder ◽  
O. Andrén ◽  
T. Kätterer ◽  
L -E Parent

The potential for storage of atmospheric CO2-C as soil organic C (SOC) in agroecosystems depends largely on soil biological activity and the quantity and quality of annual C inputs to soil. In this study we used the Introductory Carbon Balance Model (ICBM) approach driven by daily standard weather station data, specific soil properties and crop characteristics at the scale of Canadian agricultural ecoregions. The objectives were to calculate a climate-dependent soil biological activity parameter representative for annual agricultural crop production systems (re_crop) and to estimate the effect of fallow (re_fallow). These parameters are based on the daily product of soil temperature and stored water that influence biological activity in the arable layer, and are used to adjust the decomposition rates of the ICBM SOC pools. We also tested re_crop and re_fallow on SOC stock change data for different site and treatment combinations from long-term field experiments located in some of the ecoregions. An re_crop value of 0.95 for western ecoregions was on average 0.23 units lower than that of the eastern ecoregions, indicating a lower decomposition rate of SOC. Although the estimated annual C inputs to soil for small-grain cereals were on average ≈7.5% higher in the eastern ecoregions (305 vs. 285 g C m-2 yr-1), the overall results suggest that the western ecoregions would have a greater potential to maintain high SOC levels in the long term. However, these parameters varied between ecoregions and, consequently, the SOC sequestration potential was not always higher for the western ecoregions. The effect of fallow was on average ≈0.04, i.e., SOC decomposed slightly faster under fallow. Predictions for 24 out of 33 site and treatment combinations across Canada were significantly improved (P = 0.003), compared with a previous application with the ICBM that did not differentiate between crops and fallow. The methodology used here enabled us to examine regional differences in the potential for SOC sequestration as a balance between annual C inputs to soil and soil biological activity. Key words: Annual C inputs, climate, fallow, soil biological activity, agroecosystems


2017 ◽  
Vol 43 (8) ◽  
pp. 1245
Author(s):  
Jin CHEN ◽  
Dang-Wei PANG ◽  
Ming-Ming HAN ◽  
Yan-Ping YIN ◽  
Meng-Jing ZHENG ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Jarosław Grządziel ◽  
Karolina Furtak ◽  
Anna Gałązka

Comparative studies, such as the analysis of physicochemical properties and the microbiological composition of soil, are burdened with many problems resulting from the various locations of soils—often, different weather conditions among the experimental fields and varying time between the sample collection and analysis. The aim of this study was to assess the differences in the physiological profiles of bacterial communities from eight different types of soils from Poland, used in the microplot experiment that was established in 1881. The same plant species were continuously grown at all plots, at the same time, and the soil received the same type of fertilization. Moreover, the soils were always under the same weather conditions. The community-level physiological profiles of microorganisms were evaluated by using the Biolog EcoPlate™ method. The analysis demonstrated that good quality soils, especially the Gleyic Chernozem, Cambic Leptosol, and the Fluvic Cambisol exhibit a significantly higher enzyme activity, compared with the dystric soils. The dehydrogenases activity in the different time-points indicates a wide soil microbiome buffering capacity, which allows the persistence of a relatively permanent physiological profile, over many years.


2017 ◽  
Vol 63 (No. 5) ◽  
pp. 236-242 ◽  
Author(s):  
Gajda Anna M ◽  
Czyż Ewa A ◽  
Stanek-Tarkowska Jadwiga ◽  
Dexter Anthony R ◽  
Furtak Karolina M ◽  
...  

These studies were done in 2013–2016 on the effects of two tillage systems on the quality of a loamy sand soil (Eutric Fluvisol) and were based on a field experiment started in 2002. Winter wheat was grown in conventional tillage (CT) with mouldboard ploughing (inversion) tillage; and reduced (non-inversion) tillage (RT) based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as mulch in both treatments. The physical, chemical and biological properties of the soil were investigated. RT increased soil bulk density in the 0–5 cm and 5–10 cm depth layers in comparison with CT. The greatest content of soil organic carbon (SOC) was found in the 0–5 cm layer under RT. The BIOLOG EcoPlate System showed that soil under RT had a greater metabolic activity and diversity of microbial communities than soil under CT. RT improved the quality of the surface soil as shown by the greater content of SOC and microbial activity measured in terms of dehydrogenases. However, the mean yields of winter wheat under RT and CT were similar. This suggests that the effects of increased bulk density (BD) on yield can be compensated by the effects of the improved microbial status.


2019 ◽  
Vol 52 (2) ◽  
pp. 259
Author(s):  
Karolina Furtak ◽  
Anna Gałązka

<p>All over the world, including Poland, interest in the organic farming is growing. It is based on an attempt to minimize human impact on the environment while maintaining the natural functionality and productivity of the agricultural system. At the same time, every human activity in the natural environment results in greater or lesser changes in the soil ecosystem. Organic farming also has an impact on physical and chemical parameters and soil biological activity. These changes should be monitored and considered in the context of long-term land management. This review focuses on the impact of the organic farming system on soil biological activity and diversity of soil microorganisms.</p>


Sign in / Sign up

Export Citation Format

Share Document