Soil organic carbon sequestration potential for Canadian Agricultural Ecoregions calculated using the Introductory Carbon Balance Model

2008 ◽  
Vol 88 (4) ◽  
pp. 451-460 ◽  
Author(s):  
M A Bolinder ◽  
O. Andrén ◽  
T. Kätterer ◽  
L -E Parent

The potential for storage of atmospheric CO2-C as soil organic C (SOC) in agroecosystems depends largely on soil biological activity and the quantity and quality of annual C inputs to soil. In this study we used the Introductory Carbon Balance Model (ICBM) approach driven by daily standard weather station data, specific soil properties and crop characteristics at the scale of Canadian agricultural ecoregions. The objectives were to calculate a climate-dependent soil biological activity parameter representative for annual agricultural crop production systems (re_crop) and to estimate the effect of fallow (re_fallow). These parameters are based on the daily product of soil temperature and stored water that influence biological activity in the arable layer, and are used to adjust the decomposition rates of the ICBM SOC pools. We also tested re_crop and re_fallow on SOC stock change data for different site and treatment combinations from long-term field experiments located in some of the ecoregions. An re_crop value of 0.95 for western ecoregions was on average 0.23 units lower than that of the eastern ecoregions, indicating a lower decomposition rate of SOC. Although the estimated annual C inputs to soil for small-grain cereals were on average ≈7.5% higher in the eastern ecoregions (305 vs. 285 g C m-2 yr-1), the overall results suggest that the western ecoregions would have a greater potential to maintain high SOC levels in the long term. However, these parameters varied between ecoregions and, consequently, the SOC sequestration potential was not always higher for the western ecoregions. The effect of fallow was on average ≈0.04, i.e., SOC decomposed slightly faster under fallow. Predictions for 24 out of 33 site and treatment combinations across Canada were significantly improved (P = 0.003), compared with a previous application with the ICBM that did not differentiate between crops and fallow. The methodology used here enabled us to examine regional differences in the potential for SOC sequestration as a balance between annual C inputs to soil and soil biological activity. Key words: Annual C inputs, climate, fallow, soil biological activity, agroecosystems


2013 ◽  
Vol 27 (2) ◽  
pp. 133-141 ◽  
Author(s):  
A.M. Gajda ◽  
B. Przewłoka ◽  
K. Gawryjołek

Abstract The aim of this research was to evaluate changes in soil quality associated with the tillage system applied with chosen parameters of soil biological properties. The long-term field experiments were located at a private farm in Rogów (Zamooeć region, E Poland) on a silt soil and at the Experimental Station in Laskowice (Wrocław region, S-W Poland) on a sandy loam soil. Soil samples were collected from 0-15 and 15-30 cm layers. Winter wheat was grown under traditional, reduced and no-tillage systems. The analyses included estimations of microbial biomass C and N content, microbial respiration rate, activity of dehydrogenase and arylsulfatase, and fluorescein diacetate hydrolysis. After eight years the effects of tillage on both soils were clearly noticed. In general, the less disturbing tillage systems enhanced the increase of soil biological activity by 15-40%, on average, than conventional tillage system. The significant correlations between microbial biomass, and/or enzyme activities with total organic C content indicate that concentration of organic C in soil environment plays an extremely important role in enhancing the stabilization and activity of soil microorganisms, and protection of an extracellular enzymes. The studied parameters of soil biological activity showed their sensitivity to tillage applied and may be considered as an useful indicators of soil quality in monitoring all conditions alter soil environment.



2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.



2020 ◽  
pp. 1-10
Author(s):  
Émile Samson-Brais ◽  
Marc Lucotte ◽  
Matthieu Moingt ◽  
Gilles Tremblay ◽  
Serge Paquet

Repeated applications and combination of glyphosate-containing herbicides (GCH) with other herbicides are two weed management practices (WMP) used to compensate for GCH decreasing efficiency impacts in field crops. These practices may have serious impacts on soil functions because GCH affect soil biota and soil biological activity (SBA). Two field experiments, one with corn and one with soybean crops, were conducted during one growing season. SBA indicators, soil respiration (SR) and fluorescein diacetate (FDA) hydrolysis, were measured at two sampling times following six WMP. These WMP included one or two GCH applications (GCH alone or combined with other herbicides), applications of other herbicides only and mechanical weeding. WMP did not affect FDA neither for corn or soybean at either sampling times. In contrast, WMP affected SR in corn fields at both sampling times and SR in soybean field at the first sampling time. Repeating GCH applications and combining different herbicides led to lower SR, suggesting that these practices decreased SBA, whilst one single GCH application presented higher SR, suggesting that this practice stimulated SBA. Our study demonstrates that using GCH in combination with other herbicides or in multiple applications affects SBA in field conditions. Affecting soil functions and carbon cycle do bear serious weed management implications, and the choice of WMP should be taken into consideration to minimize their impacts on SBA for field crops sustainability.



2003 ◽  
Vol 51 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Z. Berzsenyi

The research agenda for crop science in the 21st century will depend largely on whether the present conditions regarding the global food surplus continue, or whether a food scarcity recurs. Crop production research is based chiefly on small-plot field experiments, the majority of which are either long-term experiments or experiments set up to investigate the specific agronomic responses of Martonvásár maize hybrids and wheat varieties. The sustainability of crop production is examined in long-term experiments. The agronomic responses of maize hybrids and wheat varieties are studied at various levels of biological organisation. Growth analysis facilitates the exact characterisation of agronomic responses and the grouping of response effects and types using multivariable methods. Continued experimentation coupled with crop simulation models and decision support systems are an ever more useful framework for analysing the complexity of agricultural systems.



2020 ◽  
Author(s):  
Viktória Labancz ◽  
András Sebők ◽  
Imre Czinkota ◽  
Tamás Szegi ◽  
András Makó

<p>Today, due to climate change, soil degradation processes related to extreme water supply situations (flood, inland water or drought) are occurring more and more frequently. Soil structure is one of the most important soil characteristics influencing many transport of materials (transport, storage of heat, gas, water and nutrients).Furthermore, it defines and ultimately determines the significant physical, chemical and biological processes involved and also the most important factor in agricultural crop production. Permanent water cover has a significant effect on soil structure, but the dynamics of disaggregation and the role of the soil factors influencing it is not yet fully understood. Our basic research aim is to investigate the effect of permanent water cover on soil structure on representative Hungarian soil samples. In our experiment, we sought to find the answer to the question of how long-term water coverage causes changes and damage to the soil structure under laboratory conditions by artificial water cover. We measured aggregate stability with Mastersizer 3000 Hydro LV laser diffractometry device and some soil chemistry parameters with Agilent 4210 MP-AES at different water cover times (selected in the literature). Based on experiences the effect of persistent water cover from the soil structure side can be most noticeable in the changes of macro- and microaggregate stability, as well as in the change of certain chemical parameters (e.g. calcium and iron content), thus, the aim of our research was to investigate these characteristics also. After compiling our results in a database, we evaluated and deduced statistical data on the long-term degradation effects of water cover. We also made an attempt to describe its disaggregation dynamics for different Hungarian soil types. Based on the results, we have selected the most sensitive soils for permanent water cover, which are also expected to be sensitive to extreme water management related to climate change.</p>



2006 ◽  
Vol 86 (1) ◽  
pp. 141-151 ◽  
Author(s):  
A. F. Plante ◽  
C. E. Stewart ◽  
R. T. Conant ◽  
K. Paustian ◽  
J. Six

Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous reports, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association. Key words: Soil organic C, tillage, residue management, N fertilization, silt, clay



2020 ◽  
Author(s):  
Jan H. Schmidt ◽  
Johannes Hallmann ◽  
Maria R. Finckh

AbstractOrganic farming systems are generally based on intensive soil tillage for seed bed preparation and weed control, which in the long-term often leads to reduced soil fertility. To avoid this, organic farming systems need to adopt conservation agriculture practices, such as minimum tillage and diligent crop rotations. However, minimum tillage generally delays soil warming in spring causing reduced nitrogen mineralization and thus poor plant growth. This negative effect needs to be compensated. We hypothesize that, in a diverse crop rotation, organic minimum tillage based on frequent cover cropping and application of dead mulch will improve soil fertility and thus crop production as confirmed by a number of chemical and biological soil indicators.We made use of two long-term field experiments that compare typical organic plough-based systems (25 cm) with minimum tillage systems (<15 cm) including application of transfer mulch to potatoes. Both tillage systems were either fertilized with compost or equivalent amounts of mineral potassium and phosphate. In 2019, soil samples from both fields were collected and analyzed for soil pH, organic carbon, macro-, micronutrients, microbial biomass, microbial activity and total nematode abundance. In addition, performance of pea in the same soils was determined under greenhouse conditions.Results from the field experiments showed an increase of macronutrients (+52%), micronutrients (+11%), microbial biomass (+51%), microbial activity (+86%), and bacterivorous nematodes (+112%) in minimum tillage compared with the plough-based system. In the accompanying greenhouse bioassay, pea biomass was 45% higher under minimum than under plough tillage. In conclusion, the study showed that under organic conditions, soil fertility can be improved in minimum tillage systems by intensive cover cropping and application of dead mulch to levels higher than in a plough-based system. Furthermore, the abundance of bacterivorous nematodes can be used as a reliable indicator for the soil fertility status.



2021 ◽  
Author(s):  
Almamunur Rashid ◽  
Mahiuddin Alamgir ◽  
Mohamad Tofayal Ahmed ◽  
Roquia Salam ◽  
Abu Reza Md. Towfiqul I ◽  
...  

Abstract Groundwater resource plays a crucial role for agricultural crop production and socio-economic development in some parts of the world including Bangladesh. Joypurhat district, the northwest part of Bangladesh, a crop production hub, is entirely dependent on groundwater irrigation. A precise assessment and prediction of groundwater level (GWL) can assist long-term GWR management, especially in drought-prone agricultural regions. Therefore, this study was carried out to identify trends and magnitude of GWL fluctuation (1980-2019) using the Modified Mann- Kendall test, Pettitt’s Test, and Sen Slope estimators in the drought-prone Joypurhat district, northwest Bangladesh. Time-series data analysis was performed to forecast GWL from 2020 to 2050 using the Auto-Regressive Integrated Moving Average (ARIMA) model. The findings of the MMK test revealed a significant declining trend of GWL, and the trend turning points were identified in the years 1991, 1993, 1997, and 2004, respectively. Results also indicate that the declining rate of GWL varied from 0.104 m/yr to 0.159 m/yr and the average rate of GWL declination was 0.136 m/yr during 1980-2019. The outcomes of wavelet spectrum analysis depicted two significant periods of the declining trend in Khetlal and Akkelpur Upazilas. The results obtained from the optimal identified model ARIMA (2,1,0), indicating that GWL will decline at a depth of 13.76 m in 2050, and the average declination rate of GWL will be 0.143 m/yr in the study area. The predicted results showed a similar declining tendency of GWL from 2020 to 2050, suggesting a disquieting condition, particularly for Khetlal Upazila. This research would provide a practical approach for GWL assessment and prediction that could help decision-makers implement long-term GWR management in the study area.



2020 ◽  
Vol 176 ◽  
pp. 04002
Author(s):  
K.O. Prokopyeva ◽  
V.A. Romanenkov ◽  
N.K. Sidorenkova ◽  
P.V. Krasilnikov

The feasibility of implementing the "4 ppm" initiative, which assumes an annual increase in organic carbon stocks of agricultural soils in the layer 0-40 cm, was estimated with the dynamic carbon model RothC in two long-term DAOS experiments in the Moscow region, conducted in neighbouring fields for 74 and 76 years. Treatments included absolute control, application of organic, mineral, organic and mineral fertilizers at increasing rates. One of the experiments showed the growth of C stocks 12‰ in the layer 0-20 cm in the first 20 years in treatments with mineral fertilization, and 17‰ with the additional application of manure in an average annual rate of 10 Mg·ha-1. The accumulation of C allowed increasing its stock by 18-25%. Still, with the subsequent decline in crop rotation productivity, there was a loss of part of the previously accumulated C. In another experiment, at close values of annual C input, there was a loss of initial C stock due to the history of land use. The crop rotation adjustment provided a 3-8 ‰ increase of soil C in the 0-20 cm layer in the first 20 years after introduction but was insufficient to match the "4 ppm" initiative. In the long term, the organic fertilizer system had an advantage over the mineral one in ensuring the stability of organic C stocks in the arable layer. However, the management of C sequestration was complicated in the non-equilibrium state of the carbon system "plant residues-organic fertilizer-soil".



Sign in / Sign up

Export Citation Format

Share Document