scholarly journals Phenology of four broad-leaved forest trees in a submountain beech forest

2009 ◽  
Vol 55 (No. 1) ◽  
pp. 15-22 ◽  
Author(s):  
B. Schieber ◽  
R. Janík ◽  
Z. Snopková

The phenology of four deciduous forest tree species (<I>Carpinus betulus</I> L., <I>Fagus sylvatica</I> L., <I>Quercus dalechampii</I> Ten., <I>Tilia cordata</I> Mill.) was studied in a submountain beech forest stand in Central Slovakia. Two spring phenological phases – bud-burst and leaf unfolding as well as one autumn phase – autumn leaf colouring were monitored over the period of 13 years. The results documented interannual variability in the dating of phenological phases within the species, while the differences among the species were also revealed. Significant correlations (<I>P</I> < 0.05) were detected between the dating of leaf unfolding and air temperature; the coefficients of correlation (<I>r</I>) ranged from –0.86 (hornbeam and beech) to –0.92 (oak). Significant relationships were also revealed between cumulative precipitation amounts and timing of autumn leaf colouring phase (<I>r</I>-value ranged from –0.73 in oak to –0.81 in hornbeam). The trend analysis showed that the onset of phenological phases was slightly shifted to the earlier dates during the period of 13 years. However, the trends were not statistically significant.

Web Ecology ◽  
2001 ◽  
Vol 2 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Z. Elek ◽  
T. Magura ◽  
T. Tóthmérész

Abstract. The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old), young (15 yr after planting), middle-aged (30 yr after planting), old Norway spruce Picea abies plantation (50 yr after planting), and a native submontane beech forest (Fagetum sylvaticae) as a control stand were compared. Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness. Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.


Author(s):  
M. Yu. Pukinskaya

The paper discusses changes in forest-forming species in the nemoral spruce forests of the Central Forest Reserve (Tver Region, the Russian Federation). A comparison is made of the characterization of vegetation in the reserve spruce forests, carried out during the first survey of the reserve by Ya. Ya. Alekseev in 1931 (Alekseev, 1935) with the descriptions of vegetation made by the author from 2011 to 2019. It is shown that the coverage of nemoral herbs in the spruce forests of the reserve has increased over the past 90 years. In addition, three types of broadleaf trees (Tilia cordata Mill., Acer platanoides L. and Ulmus scabra Mill.) have greatly increased their abundance in the stand, most notably the linden. In recent decades, the decay of nemoral spruce forests has been taking place in the Central Forest Reserve. The birch-aspenspruce stand is not replenished with spruce renewal but is replaced by linden-maple forests. The vitality of spruce undergrowth is deteriorating. After the decay of a spruce forest, a change of the tree dominants occurs on 74% of the trial plots and the stand continues with a spruce forest on 26%. The largest part of the reserve's nemoral spruce forests arose after major disturbances 100–150 years ago (on the site of burned-out areas, hurricane windblows and cuttings). Old nemoral spruce forests were formed during the period when severe frosts prevented linden and maple from entering the stand. Currently, the coincidence of climate warming with the aging of the spruce stand and the removal of anthropogenic influence contributed to the release of maple and linden from the undergrowth into the stand and change to a spruce-deciduous forest. Under the prevailing climatic conditions, a return to the spruce forest is possible in the event of a burning out or when the climate becomes cold. The nemoral spruce forest is an ecotone type and, depending on conditions, becomes a spruce or broad-leaved forest.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 556 ◽  
Author(s):  
Masahiro Yamaguchi ◽  
Yoshiyuki Kinose ◽  
Hideyuki Matsumura ◽  
Takeshi Izuta

The current level of tropospheric ozone (O3) is expected to reduce the net primary production of forest trees. Here, we evaluated the negative effects of O3 on the photosynthetic CO2 uptake of Japanese forest trees species based on their cumulative stomatal O3 uptake, defined as the phytotoxic O3 dose (POD). Seedlings of four representative Japanese deciduous broad-leaved forest tree species (Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla var. japonica) were exposed to different O3 concentrations in open-top chambers for two growing seasons. The photosynthesis–light response curves (A-light curves) and stomatal conductance were measured to estimate the leaf-level cumulative photosynthetic CO2 uptake (ΣPn_est) and POD, respectively. The whole-plant-level ΣPn_est were highly correlated with the whole-plant dry mass increments over the two growing seasons. Because whole-plant growth is largely determined by the amount of leaf area per plant and net photosynthetic rate per leaf area, this result suggests that leaf-level ΣPn_est, which was estimated from the monthly A-light curves and hourly PPFD, could reflect the cumulative photosynthetic CO2 uptake of the seedlings per unit leaf area. Although the O3-induced reductions in the leaf-level ΣPn_est were well explained by POD in all four tree species, species-specific responses of leaf-level ΣPn_est to POD were observed. In addition, the flux threshold appropriate for the linear regression of the responses of relative leaf-level ΣPn_est to POD was also species-specific. Therefore, species-specific responses of cumulative photosynthetic CO2 uptake to POD could be used to accurately evaluate O3 impact on the net primary production of deciduous broad-leaved trees.


2020 ◽  
Author(s):  
Bertold Mariën ◽  
Inge Dox ◽  
Hans J. De Boeck ◽  
Patrick Willems ◽  
Sebastien Leys ◽  
...  

Abstract. Severe droughts are expected to become more frequent and persistent. However, their effect on autumn leaf senescence, a key process for deciduous trees and ecosystem functioning, is currently unclear. We hypothesized that (I) severe drought advances the onset of autumn leaf senescence in temperate deciduous trees and that (II) tree species show different dynamics of autumn leaf senescence under drought. We tested these hypotheses using a manipulative experiment on beech saplings and three years of monitoring mature beech, birch and oak trees in Belgium. The autumn leaf senescence was derived from the seasonal pattern of the chlorophyll content index and the loss of canopy greenness using generalized additive models and piece-wise linear regressions. Drought did not affect the onset of autumn leaf senescence in both saplings and mature trees, even if the saplings showed a high mortality and the mature trees a high leaf mortality (due to accelerated leaf senescence and early leaf abscission). We did not observe major differences among species. Synthesis: The timing of autumn leaf senescence appears conservative across years and species, and even independent on drought stress. Therefore, to study autumn senescence, seasonal chlorophyll dynamics and loss of canopy greenness should be considered separately.


Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 234-242
Author(s):  
Geovany Heitor Reis ◽  
Rubens Manoel dos Santos ◽  
Diego Gualberto Sales Pereira ◽  
Jean Daniel Morel ◽  
Paola Ferreira Santos

ABSTRACT This study aimed to characterize the dynamics, structural changes and floristics of a Northern Minas Gerais Seasonally Deciduous Forest tree community, in a 5 year interval. In 2005, 10 (20 x 20m) plots were allocated. All trees (CBH ≥ 10 cm) were tagged and measured. A second census was carried out in 2010 in order to measure surviving, new recruits and dead trees. In 2005, 46 species were recorded, moving to 45 in 2010. No significant differences were found for Shannon - diversity (H’ = 2.62 nats ind-1 in 2005; H’ = 2.60 nats ind-1 in 2010) and Pielou eveness (J = 0.683 in 2005; J = 0.682 in 2010) in the interval. A total of 57 dead records (rate of 1.64% year-1) were found whereas 18 trees were recruited (rate of 0.53% year-1). Despite the higher mortality as compared to recruitment, the results suggest that the community remained stable in both structural and diversity terms in the interval considered.


Sign in / Sign up

Export Citation Format

Share Document