scholarly journals Growth and reproductive characteristics of C4 weeds under climatic conditions of the Czech Republic  

2013 ◽  
Vol 59 (No. 7) ◽  
pp. 309-315 ◽  
Author(s):  
J. Satrapová ◽  
T. Hyvönen ◽  
V. Venclová ◽  
J. Soukup

Climate change could promote the altitudinal spread of C4 weed species since they can benefit from warmer climate. The effects of altitude and climatic conditions (the sum of temperatures above 5&deg;C and precipitation) on the biomass and seed production of two annual C4 weeds &ndash; Amaranthus retroflexus L. and Echinochloa crus-galli (L.) P.<br />Beauv. &ndash; were studied in the Czech Republic. We included both temperature and precipitation variables in the study since they both serve as basic indicators of climate change and thus they have the greatest impact on plant development. The experiment was carried out by sowing both weed species on m<sup>2</sup> area with four replicates in seven localities differing in altitude in 2010 and 2011. We found no significant impacts due to altitude on any variables measured. However, climatic factors explained 44.5% of the variation in plant dry biomass and 41.4% of the seed number produced by A. retroflexus. The same variables did not significantly contribute to the variation in above-ground biomass or seed number of E. crus-galli. These results show the impact of climate conditions to vary between species and not to limit reproduction at high altitudes.

2020 ◽  
Vol 25 (50) ◽  
pp. 133-140
Author(s):  
Gordana Petrović ◽  
Darjan Karabašević ◽  
Svetlana Vukotić ◽  
Vuk Mirčetić ◽  
Adriana Radosavac

The aim of the paper is to show the impact of climate factors on the corn yield in Serbia. Contemporary climate reports show that climate is changing, and the emission of greenhouse gases is one of the main causes of climate change. In three different locations (West Bačka District, Šumadija District and Nišava District) different climatic conditions and corn yield were analyzed for the period from 1991 to 2011. In the research process, the model of multiple linear regression and Pearson coefficient of correlation was applied. Obtained results has shown that there is a high correlation between parameters of climate conditions and variance of corn yield. A small amount of precipitation quantity and high maximum values of temperatures in the vegetation period influenced the decrease in yield, which was particularly noticed during the period from 2000 to 2007. A lower yield of corn was established compared to the average yield in all three observed districts, in the Šumadija district, the yield was lower 48% in 2000 and 52% in 2007, in the West Bačka District, a yield was lower 40% in 2000 and 20% in 2007, and in the Nišava District, the yield was lower 65% in 2000 and 49% in 2007. There are perennial variations of climatic factors, especially temperature and precipitation quantity, which affect the realization of the economic profitability of growing agricultural plant species. Losses in agriculture can be higher in conditions of an unstable climate. It is necessary to more precisely predict climate change and create new hybrids and varieties for cultivation that will be adaptable to changed climate conditions. Adaptations of plants to climatic conditions changes will contribute to greater economy of agricultural production, and the provision of food for the world's population.


2020 ◽  
Vol 13 (1) ◽  
pp. 222
Author(s):  
Miroslava Navrátilová ◽  
Markéta Beranová ◽  
Lucie Severová ◽  
Karel Šrédl ◽  
Roman Svoboda ◽  
...  

The aim of the presented article is to evaluate the impact of climate change on the sugar content of grapes in the Czech Republic during the period 2000–2019 through selected indicators on the basis of available secondary sources. Attention is focused on the developments in both the main wine-growing regions of Moravia and Bohemia. In the field of viticulture and wine-growing, the sugar content of grapes, as a basic parameter for the classification of wines, plays an important role. In the Czech Republic, the average sugar content of grapes has had a constantly growing trend. This trend is evident both in the wine-growing region of Bohemia and in the wine-growing region of Moravia. The impact of climate change, especially the gradual increase of average temperatures in the growing season, cannot be overlooked. It greatly affects, among other things, the sugar content of grapes. Calculations according to the Huglin Index and the Winkler Index were used to determine the relationship between climate and sugar content. These indexes summarize the course of temperatures during the entire vegetation period into a single numerical value. The results show that both indexes describe the effect of air temperature on sugar content in both wine regions of the Czech Republic in a statistically significant way. The Huglin Index shows a higher correlation rate. The Winkler Index proved to be less suitable for both areas. Alternatively, the Winkler Index calculated for a shorter growing season was tested, which showed a higher degree of correlation with sugar content, approaching the significance of the Huglin Index.


2021 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

&lt;p&gt;The majority of food production is based on agricultural practices developed for the stable Holocene climatic conditions, which now are under risk for rapid change due to climate change. Although various studies have assessed the potential changes in climatic conditions and their projected impacts on yields globally, there is no clear understanding on the climatic niche of the current food production. Nor, which areas are under risk of falling outside this niche.&lt;/p&gt;&lt;p&gt;In this study we aim first at defining the novel concept Safe Climatic Space (SCS) by using a combination of three key climatic parameters. SCS is defined here as the climate conditions to which current food production systems (here crop production and livestock production separately) are accustomed to, an analogue to Safe Operating Space (SOS) concepts such as Planetary Boundaries and human climate niche. We use a combination of selected key climatic factors to define the SCS through the Holdridge Life Zone (HLZ) concept. It allows us to first define the SCS based on three climatic factors (annual precipitation, biotemperature and aridity) and to identify which food production areas would stay within it under changed future climate conditions.&amp;#160;&lt;/p&gt;&lt;p&gt;We show that a rapid and unhalted growth of GHG emissions (SSP5-8.5) could force 31% (25-37% with 5th-95th percentile confidence interval) of global food crop production and 34% (26-43%) of livestock production beyond the SCS by 2081-2100. Our results underpin the importance of committing to a low emission scenario (SSP1-2.6), whereupon the extent of food production facing unprecedented conditions would be a fraction: 8% (4-10%) for crop production and 4% (2-8%) for livestock production. The most vulnerable areas are the ones at risk of leaving SCS with low resilience to cope with the change, particularly South and Southeast Asia and Africa&amp;#8217;s Sudano-Sahelian Zone.&amp;#160;&lt;/p&gt;&lt;p&gt;Our findings reinforce the existing research in suggesting that climate change forces humanity into a new era of reduced validity of past experiences and dramatically increased uncertainties. Future solutions should be concentrated on actions that would both mitigate climate change as well as increase resilience in food systems and societies, increase the food production sustainability that respects key planetary boundaries, adapt to climate change by, for example, crop migration and foster local livelihoods especially in the most critical areas.&lt;/p&gt;


2007 ◽  
Vol 2 (3) ◽  
pp. 190-199 ◽  
Author(s):  
Donald Knight ◽  
◽  
Paul Samuels ◽  

Some significant flood events that have occurred in various European countries in the last decade are described. They are used to illustrate the widespread nature of flooding, its economic impact and the resultant loss of life. The underlying hydro-meteorological causes of each flood are outlined, followed by a brief chronology of the flood event and the subsequent consequences. The flood events have been drawn from countries with differing climatic conditions, and from river basins that differ in both size and topography. The selection includes floods from the following countries: the Czech Republic, France, Germany, Hungary, Poland, Switzerland and the UK. The events include examples of both flash floods and slower basin-wide floods. The important lessons that may be drawn from these events are highlighted, as are the economic impacts such floods might have in the future due to climate change.


2008 ◽  
Vol 20 (2) ◽  
pp. 183 ◽  
Author(s):  
T. HYVÖNEN

Elevation in temperatures due to climate change could promote the invasion by C4 weed species of arable fields in the boreal region, which are dominated by C3 crops. The success of Amaranthus retroflexus L. (a C4 weed) in spring barley (a C3 crop) was studied at current and elevated temperatures (3°C difference) in a greenhouse experiment in southern Finland. The competition treatments included no competition and four levels of competition with barley, differing in terms of germination time. The success of A. retroflexus was measured as growth (height and biomass) and seed production (number and biomass). Elevation in temperature enhanced seed production of A. retroflexus, but the impact on growth was minor (only difference in plant height in one treatment). The growth and seed production of A. retroflexus in competition with barley was minimal although the growth of barley decreased with the rise in temperature. The results indicate that climate change could improve growth of a C4 weed such as A. retroflexus, but it is unlikely to succeed in spring barley.;


2009 ◽  
Vol 149 (6-7) ◽  
pp. 913-919 ◽  
Author(s):  
Martin Mozny ◽  
Radim Tolasz ◽  
Jiri Nekovar ◽  
Tim Sparks ◽  
Mirek Trnka ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Georg Jocher ◽  
Natalia Kowalska ◽  
Manuel Acosta ◽  
Jan Krejza ◽  
Irena Marková ◽  
...  

Climate-smart forestry (CSF) consists of an extensive framework of actions directed to mitigating and adapting to global climate change impacts on the resilience and productivity of forest ecosystems. This study investigates the impact of the pan-European 2018 drought on carbon exchange dynamics in typical highland and mountain forests in the Czech Republic, including two coniferous stands (Norway spruce at Bílý Kříž and Rajec) and one deciduous stand (European beech at Štítná). Our results show that the annual net ecosystem CO2 uptake at Rajec decreased by 50% during the drought year in comparison to a reference year with normal climatic conditions. The Bílý Kříž stand is less affected by drought, as the local microclimate ensures sufficient water supply. The European beech forest at Štítná is most resilient against drought and its negative impacts — there we detect no differences in carbon exchange dynamics between the drought year and the reference year. We consider the matching of tree species to site conditions as crucial in the context of CSF, specifically regarding the stand response to water limitation and water supply and demand. Successively replacing spruce with beech trees in areas with high water demand but limited water supply, like Rajec, will support the goals of CSF.


Author(s):  
Eva Kocmánková ◽  
Miroslav Trnka ◽  
Daniela Semerádová ◽  
Zdeněk Žalud ◽  
Martin Dubrovský ◽  
...  

This present study is focused on the modeling of the most important potato pest i.e Colorado potato beetle (Leptinotarsa decemlineata, Say 1824) development in relation to the climate conditions over the area of the Czech Republic. The aim was to develop a model allowing the assessment of the CPB possible spread under the climate change. For the estimation of the CPB occurrence in expected climate conditions we used a dynamic model CLIMEX that enables to determine the suitability of a given location climate for the pests survival and infestation capability based on known pests requirements to the climate conditions. Following the validation and calibration of the model outputs, the meteorological data were altered according to three Global Circulation Models (ECHAM4, HadCM3, NCARPCM) that were driven by two SRES emission scenarios (A2, B1) with two assumed levels of climate system sensitivity for period 2025 and 2050. Model output, for current and expected climate conditions, were visualized by GIS using a digital landscape model. Under all climate change scenarios we noted a widening of CPB distribution area and change in the infestation pressure of the pest.


2021 ◽  
Author(s):  
Georg Jocher ◽  
Natalia Kowalska ◽  
Manuel Acosta ◽  
Jan Krejza ◽  
Irena Marková ◽  
...  

&lt;p&gt;Climate-smart forestry (CSF) consists of an extensive framework of actions directed to mitigating and adapting to global climate change impacts on the resilience and productivity of forest ecosystems. This study investigates the impact of the pan-European 2018 drought on carbon exchange dynamics in typical highland and mountain forests in the Czech Republic, including two coniferous (Norway spruce at B&amp;#237;l&amp;#253; K&amp;#345;&amp;#237;&amp;#382; and Rajec) and one deciduous (European beech at &amp;#352;t&amp;#237;tn&amp;#225;) stand. Our results show annual net ecosystem CO&lt;sub&gt;2&lt;/sub&gt; uptake at Rajec to be reduced by 50% during the drought year in comparison to a reference year with normal climatic conditions. B&amp;#237;l&amp;#253; K&amp;#345;&amp;#237;&amp;#382; is less affected by drought, as the local microclimate ensures sufficient water supply. The European beech forest at &amp;#352;t&amp;#237;tn&amp;#225; is most resilient against drought and its negative impacts: there we detect no differences in carbon exchange dynamics between the drought year and the reference year. We consider the matching of tree species to site conditions as crucial in the context of CSF, specifically regarding the stand response to water limitation and water supply and demand. Successively replacing spruce with beech trees in areas with high water demand but limited water supply, like Rajec, will support the goals of CSF.&lt;/p&gt;


Environments ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 19
Author(s):  
Manuel Acosta ◽  
Alexander Ač ◽  
Marian Pavelka ◽  
Kateřina Havránková ◽  
Henry W. Loescher ◽  
...  

A growing body of scientific evidence indicates that we have entered the Anthropocene Epoch. Many assert that society has exceeded sustainable ecological planetary boundaries and that altered biogeophysical processes are no longer reversible to natural rates of ecosystem functioning. To properly and successfully address societal needs for the future, more holistic and complex methods need to be applied at various spatial and temporal scales. The increasingly interconnected nature of human and natural environments—from individuals to large megacities and entire continents and from cells through ecosystems to the biosphere as a whole (e.g., as seen in the carbon cycle)—demand new and often interdisciplinary and international approaches to address emerging global challenges. With that perspective in mind, the Czech Republic’s National Climate Program was established in 1991 with the aim to understand the impact of global environmental change on society. The National Climate Program was updated in 2017 to formulate a new Climate Protection Policy. Here, we outline the multifaceted problems that climate change poses for the Czech Republic, as well as a new scientific infrastructure and approaches directed to better understanding the effects of climate change on our ecosystems, water resources, urban environment, agriculture, human health, and general economy.


Sign in / Sign up

Export Citation Format

Share Document