scholarly journals The effects of Rubus hyrcanus L. and Philonotis marchica (Hedw.) Brid. on soil loss prevention from cutslopes of a forest road

2012 ◽  
Vol 58 (No. 8) ◽  
pp. 337-344 ◽  
Author(s):  
A. Parsakhoo ◽  
M. Lotfalian ◽  
A. Kavian ◽  
S.A. Hosseini ◽  
M. Demir

The effects of Rubus hyrcanus L. and Philonotis marchica (Hedw.) Bridon on runoff generation and soil loss from cutslopes of forest roads were investigated. The study was conducted at the northern forest of Iran, about 30 km south of the city of Sari. Runoff and sedimentation after each rainfall simulation and chemical and physical soil properties were measured in 14 plots with an area of 0.48 m<sup>2</sup>. The obtained results indicate that the vegetation dominated by Philonotis marchica exhibited the higher runoff coefficient and soil loss, with averages of 27.25% and 92.40&nbsp;g&middot;m<sup>&ndash;2</sup>&middot;h<sup>&ndash;1</sup>(gram per square meter per hour), respectively, in comparison to Rubus hyrcanus. For Philonotis marchica (Hedw.) Brid. the sediment concentration increased quickly at the beginning of rainfall simulations and after 10&ndash;12 min there was a fast decrease in sediment concentration. The peak of sediment concentration was for the Rubus hyrcanus L. in the 13<sup>th</sup>&ndash;15<sup>th</sup> min In conclusion, Rubus hyrcanus L. prevented or decreased the risk of runoff and soil loss from cutslopes of forest roads in our study area. &nbsp;

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2856
Author(s):  
Judit Alexandra Szabó ◽  
Csaba Centeri ◽  
Boglárka Keller ◽  
István Gábor Hatvani ◽  
Zoltán Szalai ◽  
...  

Soil erosion is a complex, destructive process that endangers food security in many parts of the world; thus, its investigation is a key issue. While the measurement of interrill erosion is a necessity, the methods used to carry it out vary greatly, and the comparison of the results is often difficult. The present study aimed to examine the results of two rainfall simulators, testing their sensitivity to different environmental conditions. Plot-scale nozzle type rainfall simulation experiments were conducted on the same regosol under both field and laboratory conditions to compare the dominant driving factors of runoff and soil loss. In the course of the experiments, high-intensity rainfall, various slope gradients, and different soil surface states (moisture content, roughness, and crust state) were chosen as the response parameters, and their driving factors were sought. In terms of the overall erosion process, the runoff, and soil loss properties, we found an agreement between the simulators. However, in the field (a 6 m2 plot), the sediment concentration was related to the soil conditions and therefore its hydrological properties, whereas in the laboratory (a 0.5 m2 plot), slope steepness and rainfall intensity were the main driving factors. This, in turn, indicates that the design of a rainfall simulator may affect the results of the research it is intended for, even if the differences occasioned by various designs may be of a low order.


1998 ◽  
Vol 78 (2) ◽  
pp. 321-330 ◽  
Author(s):  
A. Cerdà

The seasonal and spatial variability of soil erosion under contrasting slope aspects in southeastern Spain was studied by performing and interpreting 84 rainfall simulation experiments conducted at an intensity of 55 mm h−1 during 1 h. The vegetated soils on the north-facing slope and the upper afforested parts had negligible sediment yield, runoff and erosion, while the bare soils on the south-facing slope had very high runoff rates. Runoff sediment concentration decreased over time during simulated rainfall events on the vegetated areas while it increased on the bare ones. Solute release decreased over time on both surface types. Seasonally, runoff sediment concentration was highest in autumn, decreasing in winter and spring, due to the exhaustion of erodible soil and the vegetation growth. Sediment concentrations increased slightly in summer when runoff and erosion rates where very low. Increasing seasonal variability corresponded with increasing runoff and soil loss rates. Key words: Runoff, soil loss, Mediterranean, erodibility


CATENA ◽  
2008 ◽  
Vol 74 (1) ◽  
pp. 73-79 ◽  
Author(s):  
L. Martínez-Zavala ◽  
A. Jordán López ◽  
N. Bellinfante

2013 ◽  
Vol 3 (3) ◽  
pp. 179-183 ◽  

In order to study the erodibility characteristics of some calcareous soils from Central Greece, the instability of aggregates of 2.0-4.7 mm in water was studied. Soil loss experiments were also conducted in the laboratory using a rain simulator where soil loss was measured and the soils’ attitude was studied under the conditions of simulated rainfall. It was found that the instability of aggregates is negatively correlated with cation exchange capacity and the total specific surface of soils. Also the calcium carbonate content affects positively the aggregates instability. The process which seems to control dominantly the time that runoff occurs and the runoff and soil loss quantity, is the creation of surface seals with raindrop impact due to large calcium carbonate quantities that are met in the clay fraction.


2014 ◽  
Vol 60 (No. 3) ◽  
pp. 109-114 ◽  
Author(s):  
P. Dalir ◽  
R. Naghdi ◽  
V. Gholami

Forest roads are the most important ways of access; nevertheless, they are the main source of sediment production. The delivered sediment by forest roads causes environmental problems and pollution of water resources. This study has been done to present a model for estimating the sediment yield of forest road using a multiple regression analysis on the Caspian southern coasts (north of Iran, Lomir watershed). For this purpose, 45 wood dams were created and their sediment volume (dependent variable) was measured. The following independent variables were estimated: road length, road width, road slope, vegetation cover, height of cut slope and road age. Then, a regression analysis was done using SPSS software to present a linear model. In the next step, the accuracy and capability of the presented model were considered and validated using the model for estimating the wood dam sediment. The results showed that road length and road width have significant effects in sediment generation. Also, the presented model can estimate the forest road sediment in northern Iran. &nbsp;


2017 ◽  
Vol 36 (1) ◽  
pp. 25-39 ◽  
Author(s):  
Tomáš Orfánus ◽  
Marián Jenčo ◽  
Juraj Bebej ◽  
Martin Benko

Abstract There was a destructive flood on Gidra river on June induced by 104-mm rainfall during 3 h on 7 June 2011. The total flood discharge was estimated to be 531,000 m3. The upper part of the Gidra river catchment is forested by more than 95%, but the forest floor has been disrupted to a large extent by intensive logging activities in the basin. Forest road density is up to 10 km/km2 in the catchment. The field inspections in the catchments revealed that approximately 25% of forest roads have been deepened down to the less permeable subsoil directly during their construction or by subsequent traffic and soil erosion. Forest roads affect runoff generation via two mechanisms: (1) generation of infiltration-excess runoff on road surfaces and (2) capturing of hillslope surface and subsurface water by road incisions. Infiltration-excess water runoff from all compacted surfaces was estimated to be about 54,000 m3 by simply multiplying the compacted area by the difference between the precipitation and infiltration. More challenging was to quantify the transformation of hillslope water to the road-surface runoff. We have suggested the methodological approach that combines the GIS analyses of the terrain with mathematical simulations of the subsurface water exfiltration from hillslopes to the road surfaces using HYDRUS 2D model. Simulations based on the variability of slope inclinations and slope lengths within catchment revealed that drainage of the upward hillslopes by forest roads and deeper logging lines increased the forest road runoff by another 6,000-15,000 m3 of water.


2021 ◽  
Vol 42 (2) ◽  
pp. 259-268
Author(s):  
Ahmad Solgi ◽  
Ramin Naghdi ◽  
Eric K. Zenner ◽  
Vahid Hemmati ◽  
Frashad Keivan Behjou ◽  
...  

Forest operations often enhance runoff and soil loss in roads and skid trails, where cut slopes and fill slopes are the most important source of sediment. This study evaluated the effectiveness of four erosion control treatments applied to cut slope and fill slope segments of forest roads of different ages in the Hyrcanian forest in northern Iran. The treatment combinations, each replicated three times, included four classes of mulch cover (bare soil [BS], wood chips cover [WCH], sawdust cover [SC], and rice straw cover [RSC]), two levels of side slope (cut slope and fill slope), two levels of side slope gradient (20–25% and 40–45%), and three levels of road age (three, 10 and 20 years after construction). Mulch cover treatments significantly reduced average surface runoff volume and sediment yield compared to BS. Regardless of erosion control treatment, greater surface runoff volume and soil loss under natural rainfall occurred on steeper slope gradients in all road age classes and decreased with increasing road age on both slope gradients. On cut slopes, average runoff and soil loss from the plots covered with WCH (17.63 l per plot, 2.43 g m–2) was lower than from those covered with SC (22.81 l per plot, 3.50 g m–2), which was lower than from those covered with RSC (29.13 l per plot, 4.41 g m–2 and BS (34.61 l per plot, 4.94 g m–2). On fill slopes, average runoff and soil loss from the plots covered with WCH (14.13 l per plot, 1.99 g m–2) was lower than from plots covered with SC (20.01 l per plot, 3.23 g m–2), which was lower than from plots covered with RSC (24.52 l per plot, 4.06 g m–2) and BS (29.03 l per plot, 4.47 g m–2). Surface cover successfully controlled erosion losses following road construction, particularly on steep side slopes with high erosion potential.


2021 ◽  
Vol 13 (2) ◽  
pp. 789
Author(s):  
Tugrul Yakupoglu ◽  
Recep Gundogan ◽  
Turgay Dindaroglu ◽  
Kadir Kusvuran ◽  
Veysel Gokmen ◽  
...  

The main aim of this research was to determine the potential effects of different tillage systems (TT: traditional tillage and RT: reduced tillage) on runoff and erosion at two different locations (Kahramanmaras and Tarsus, Southern Turkey) under (i) fallow, (ii) wheat (Triticumaestivum L.), and (iii) sainfoin (Onobrychissativa L.) crops. Rainfall simulations with intensity of 120 mm h−1 and 30-min duration, representing a typical extreme thunderstorm in this area, were used. We quantified the elapsed time to runoff generation (ET), total runoff volume (R), soil loss (SL), sediment concentration (SC), and runoff coefficient (RC). At both locations, the fallow plots indicated the first runoff response ranging between 1.2 and 3.1 min, while the range was between 9.4 and 8.9 min for the sainfoin plots. The highest runoff coefficient was recorded for the fallow parcel in Tarsus (57.7%), and the lowest runoff coefficient was recorded for the sainfoin parcel in Kahramanmaras (4%). For both study sites, the fallow plots showed higher soil erosion rates (871 and 29.21 g m−2) compared with the wheat plots (307 and 11.25 g m−2), while sainfoin recorded the lowest soil losses (93.68 and 3.45 g m−2), for Tarsus and Kahramanmaras, respectively. Runoff and sediment yield generated from sainfoin and wheat parcels under the RT system were less than under the TT system at the Kahramanmaras location. At the Tarsus location, the effect of soil tillage on soil and water losses was insignificant on the sainfoin planted plots. The reduced tillage system was successful in reducing sediment yield and runoff generated from parcels growing wheat and sainfoin compared to traditional tillage in Tarsus location, but runoff and soil loss were found to be very high compared to parcels constructed in the Kahramanmaras location.


Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 1131 ◽  
Author(s):  
B. Yu ◽  
C. J. Rosewell

It is important to use historical data to test physically based runoff and soil erosion prediction models as well as the method to estimate model parameters. WEPP (Water Erosion Prediction Project) was validated for bare fallow and annual wheat treatments at Gunnedah, New South Wales, Australia. Wheat stubble was either burned or mulched. Climate, soil, management, and runoff and soil loss data were collected for the period 1980–87 for 3 bare fallow plots, and 1950–74 for 10 annual wheat plots. Three slope lengths from 21 to 62 m were established for the treatment with stubble burned. Slope steepness varied from 8% to 9% at the site. Effective saturated hydraulic conductivity and soil erodibility parameters were estimated from measured soil properties. No further calibration of these parameters was attempted in order to assess the true potential of the model for runoff and soil loss predictions. WEPP worked well for the bare fallow plots with prediction efficiency of 0.97 for event runoff and soil losses. WEPP generally over-predicted the runoff, and consequently, the soil loss for annual wheat treatments for the site. WEPP was able to predict the effect of slope length on sediment concentration and soil loss for the site. CLIGEN, which provides the continuous climate input to WEPP, was found to produce adequately the mean daily rainfall, but produced higher than expected peak rainfall intensity, resulting in higher runoff and soil loss for all treatments.


Sign in / Sign up

Export Citation Format

Share Document