scholarly journals HOT DEFORMATION BEHAVIOR AND PROCESSING MAP OF A Mg-Gd-Y-Zn-Zr ALLOY

2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Zhaoming Yan ◽  
Jiaxuan Zhu ◽  
Zhimin Zhang ◽  
Qiang Wang ◽  
Yong Xue

Compression tests of a Mg-13Gd-4Y-2Zn-0.5Zr alloy were carried out on a Gleeble-1500D thermo-mechanical simulator within a temperature range of 420–500 °C and strain rate of 0.001–5 s–1 so that the corresponding flow behavior was investigated. The Zener-Hollomon parameter Z was used in a hyperbolic-sine-type equation to express the relationships between the peak stress, deformation temperature and strain rate. Work hardening, dynamic recovery and dynamic recrystallization were the main characteristics affecting the plastic-deformation behaviors. The activation energy Q was calculated to be 208.2 kJ/mol and processing maps at strains of 0.3, 0.5 and 0.7 were generated based on a dynamic material model. The optimum processing parameters were obtained with a power-dissipation analysis.

2017 ◽  
Vol 872 ◽  
pp. 30-37
Author(s):  
Meng Han Wang ◽  
Kang Wei ◽  
Xiao Juan Li

The hot compressive deformation behaviors of ZHMn34-2-2-1 manganese brass are investigated on Thermecmastor-Z thermal simulator over wide processing domain of temperatures (923K-1073K) and strain rates (0.01s-1-10s-1). The true stress-strain curves exhibit a single peak stress, after which the stress monotonously decreases until a steady state stress occurs, indicating a typical dynamic recrystallization. A revised constitutive model coupling flow stress with strain, strain rate and deformation temperature is established with the material constants expressed by polynomial fitting of strain. Moreover, better prediction ability of the constitutive model is achieved by implementation of a simple approach for modified the Zener-Hollomon parameter considering the compensation of strain rate and temperature increment. By comparing the predicted and experimented values, the correlation coefficient and mean absolute relative error are 0.997 and 2.363%, respectively. The quantitative statistical results indicate that the proposed constitutive model can precisely characterize the hot deformation behavior of ZHMn34-2-2-1 manganese brass.


2014 ◽  
Vol 887-888 ◽  
pp. 1161-1168
Author(s):  
Jian Guo Wang ◽  
Dong Liu ◽  
Tao Wang ◽  
Yan Hui Yang

The deformation behavior of a Udimet720Li superalloy under hot compression tests was characterized in the temperature range of 1060~1160°C and strain rate range of 0.001~20s-1. Processing maps were conducted at a series of strains to calculate the efficiency of hot working and to recognize the instability regions of the flow behavior. A Zener-Hollomon parameter is given to characterize the dependence of peak stress on temperature and strain rate. The efficiency of power dissipation of the Udimet720Li superalloy obtained in a strain range of 0.1~0.7 are essentially similar, which indicates that strain does not have a significant influence and the instability region shown in high strain and high strain rates at all temperatures. The regions for the full recrystallization can be divided by the dissolution beginning temperature of primary γ'which are the optimum hot working parameters.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2007 ◽  
Vol 546-549 ◽  
pp. 1065-1068 ◽  
Author(s):  
You Ping Yi ◽  
Hua Chen ◽  
Yong Cheng Lin

The plastic deformation behaviors of 7050 Al alloy were investigated by compression tests at temperatures ranging of 250°C450°C under constant strain rates of 0.01s−1, 1s−1 and 10s−1. The results showed that all the flow curves consisted of three stages, i.e. strain-hardening, strain-softening and steady state-strain. Initially, the stress rises steeply at microstrain deformation, and then increases at a decreased rate, followed by a strain-softening until a steady state stress. The stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in an exponent-type equation, 1 19 7.202 σ p 80.71 sinh (1.64 10 Z) = ⋅ −  × − ⋅ −  . Elongated grains with serrations developed in the grain boundaries were observed; the dynamic recrystallization (DRX) occurs with increasing temperature and dislocation density, and the shape of grain at steady state is nearly equiaxial. It can be concluded that the DRX phenomenon is sensitive to the temperature and the dynamic flow softening is mainly as the result of dynamic recovery and DRX.


2013 ◽  
Vol 721 ◽  
pp. 82-85
Author(s):  
Jian Bin Zhang ◽  
Dong Mei Yu ◽  
Shao Rui Niu ◽  
Gen Shun Ji

The hot deformation behavior and microstructure evolution of 430 ferritic stainless steel (430 FSS) were investigated within the temperature range of 950°C~1150°C at the strain rate of 0.01 s-1, 0.1 s-1, and 1.0 s-1using a thermo-mechanical simulator. The effects of temperature and strain rate on the flow behavior and microstructures of 430 ferritic stainless steel at reduction ratio 50 % were analyzed. Results indicated that the apparent stress exponent and the apparent activation energy of the steel were about 1.08 and 344 kJ/mol, respectively. The hot deformation equation of 430 was considered as. There was a relationship between the softening mechanism and Zener-Hollomon parameter (abbreviated Z). With the Z value increasing from 4.30×1010to 5.00×1014, the hot deformation peak stress correspondingly increased from 10.74 MPa to 76.02MPa.


2011 ◽  
Vol 117-119 ◽  
pp. 893-896
Author(s):  
Yong Liu ◽  
Yong Wei Sun ◽  
Bao Hong Tian ◽  
Jiang Feng ◽  
Yi Zhang

Hot deformation behavior of the 30%Mo/Cu-Al2O3 composite was investigated by hot compression tests on Gleeble-1500D thermal simulator in the temperature ranges of 450~750°C and the strain rate ranges of 0.01~5s-1, as the total strain is 0.7. The results show that the peak stress increases with the decreased deformation temperature or the increased strain rate. Based on the true stress-strain curves, the established constitutive equation represents the high-temperature flow behavior of the composite, and the calculated flow stresses are in good agreement with the high- temperature deformation experimental results.


2018 ◽  
Vol 37 (6) ◽  
pp. 551-562 ◽  
Author(s):  
Yu-ting Zhou ◽  
Yu-feng Xia ◽  
Lai Jiang ◽  
Shuai Long ◽  
Dong Yang

AbstractA series of compression tests were performed on Ti-6Al-4V-0.1Ru titanium alloy in nine temperatures between 750 and 1150 °C and a strain rate range of 0.01 to 10s−1. The hot deformation behaviors of Ti-6Al-4V-0.1Ru showed highly non-linear intrinsic relationships with temperature, strain and strain rate. The flow curves exhibited different softening mechanisms, dynamic recrystallization (DRX) and dynamic recovery (DRV). In this study, the rheological behaviors of Ti-6Al-4V-0.1Ru were modeled using a special hybrid prediction model, where genetic algorithm (GA) was implemented to do a back-propagation neural network (BPNN) weights optimization, namely GA-BPNN. Subsequently, the predicted results were compared with experimental values and GA-BPNN model showed the ability to predict the flow behaviors of Ti-6Al-4V-0.1Ru with superior accuracy. Then a 3-D continuous interaction space was constructed to visually reveal the successive relationships among processing parameters. Finally, the predicted data were applied to process simulation and accuracy results were achieved.


2011 ◽  
Vol 704-705 ◽  
pp. 135-140 ◽  
Author(s):  
Yi Zhang ◽  
Bao Hong Tian ◽  
Ping Liu

The hot deformation behavior of Cu-Ni-Si-P alloy have been investigated by means of isothermal compression tests on a Gleeble-1500D thermal mechanical simulator in the temperature ranges of 873-1073 K and strain rate ranges of 0.01-5s-1. The results show that the dynamic recryatallization occurs in Cu-Ni-Si-P alloy during hot deformation. The peak stress during hot deformation can be described by the hyperbolic sine function. The influence of deformation temperature and strain rate on the peak stress can be represented using the Zener-Hollomon parameter. Moreover, the activation energy for hot deformation of Cu-Ni-Si-P alloy is determined to be 485.6 kJ / mol within the investigated ranges of deformation temperature and strain rate. The constitutive equation of the Cu-Ni-Si-P alloy is also established. Keywords: Cu-Ni-Si-P alloy; Hot deformation; Dynamic recrystallization; Zener-Hollomon parameter.


2013 ◽  
Vol 712-715 ◽  
pp. 658-661 ◽  
Author(s):  
Dong Xu Wen ◽  
Y.C. Lin ◽  
Ming Song Chen

In order to study the workability and optimize hot forming processing parameters for GH4169 superalloy, the hot deformation behaviors are investigated. The results show that the flow stress strongly depends on the strain rate, deformation temperature and strain. With the increase of strain rates and the decrease of deformation temperature, the flow stress increases. The flow stress exhibits an initial increase with the strain until a peak stress value, showing a obvious work hardening. After the peak stress, increasing strain results in the decrease of stress, indicating a dynamic flow softening. A revised constitutive equation incorporating the effects of temperature, strain rate and work-hardening rate of the material is established by compensation of strain. A good agreement between the measured and predicted results shows that the established model can give an accurate prediction of the flow behavior of GH4169 superalloy.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 875-880 ◽  
Author(s):  
HONGWU SONG ◽  
SHIHONG ZHANG ◽  
MING CHENG ◽  
FEI MEN ◽  
CHUNLING BAO

The effect of processing parameters on hot workability and microstructure evolution during subtransus deformation of TC11 alloy with widmanstăten microstructure was studied using isothermal compression tests. Testing was conducted at strain rates of 0.1-10s-1, temperature ranges 920-980°C and height reductions of 30-70%. The influence of hot working parameters on flow behavior, hot workability and microstructure evolution was systemically investigated. The results showed that all the flow curves exhibited a peak stress at very low strains (<0.1) followed by extensive flow softening. Surface fracture, cavitations and localized shear flow were found to be main factors that limited the hot workability of TC11 alloy. At low strains, lamellar kinking started to occur due to the orientation between the colony α lamellar and stress axis. With deformation continues, reorientation of the lamellar colony occurred and the deformed lamellar became elongated and thinner. At high stains, segmentation and globularization of α lamellar took place to produce a refined microstructure with α grain size around 1 µm that is technologically desirable for secondary processes such as superplastic forming. A microstructure mechanism map based on the previous results was then established and applied to process design considering defect and microstructure control.


Sign in / Sign up

Export Citation Format

Share Document