SIMULATION OF AN UNSTEADY INCOMPRESSIBLE FLUID FLOW THROUGH A PERFORATED PIPELINE

Author(s):  
Kh.M. Gamzaev ◽  

A mathematical model of the unsteady flow of an incompressible viscous fluid through a perforated pipeline is proposed, which is described by a system of nonlinear partial differential equations. In the framework of the model, the purpose is to determine the pressure and the flow rate of the fluid at the pipeline inlet, providing the flow rate and the pressure required at the pipeline outlet. By combining the system of the equations, the original problem is reduced to a boundary-value inverse problem for a nonlinear parabolic equation with respect to fluid flow rate. To solve the boundary inverse problem, the method of nonlocal perturbation of boundary conditions is proposed. A discrete analog of the inverse problem is obtained using the finitedifference approximation, and a special approach is suggested for solving the resulting system of difference equations. As a result, the difference problem for each discrete value of the time variable splits into two second-order difference problems and a linear equation with respect to an approximate value of the desired flow rate at the pipeline inlet. The absolutely stable Thomas method is used to numerically solve the obtained difference problems. After determining the flow rate distribution along the entire pipeline, the pressure at the pipeline inlet is also calculated using an explicit formula. Based on the proposed computational algorithm, the numerical experiments are performed for benchmark problems.

Author(s):  
J. Soman ◽  
B. Mathew ◽  
T. J. John ◽  
H. Hegab

This paper deals with the analyses of fluid flow distribution in a microfluidic device with in-line manifolds. The analysis was performed using commercially available microfluidic simulation software called CoventorWare™. The number of channels in the microfluidic device considered for this study was kept at ten due to limitations on the number of nodes and computational time. Channels with only square profile were analyzed for flow rates varying between 1 to 60 ml/min. The length of the channels was maintained at 1.5 cm for all simulations. The fluid flow distribution characteristics for different channel widths/depths (200, 100, and 75 μm) were investigated. It was observed that the flow rate decreased from the central channels to the outer channels. The flow per channel was symmetric about the geometric centre of the microdevice. The uniformity in flow was accessed using the root mean square value of flow per channel and it decreased with decrease in channel width/depth for a specific flow rate. The difference in the flow rate through the channels increased with increase in total flow rate. Similarly, the spacing between the channels was varied (300, 200, and 100 μm) for a microdevice with channel width/depth of 100 μm and its corresponding flow characteristics were studied for flow rate ranging between 1 ml/min and 60 ml/min. Finally, the length of each manifold was varied between 2500 μm and 1000 μm for understanding the effect of manifold length on flow distribution. The standard deviation of flow per channel did not show much variation with changes in spacing and manifold length. In addition each design of the manifolds was analyzed on the basis of pressure and flow rate as well as velocity profile in each of the channels.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


1999 ◽  
Author(s):  
Daniel P. Nicolella ◽  
Eugene Sprague ◽  
Lynda Bonewald

Abstract It has been shown that bone cells are more responsive to fluid flow induced shear stress as compared to applied substrate strain (Owan, et al., 1997, Smalt, et al., 1997). Using novel micromechanical analysis techniques, we have measured individual cell strains resulting from 10 minutes of continuous fluid flow at a flow rate that produces a shear stress of 15 dyne/cm2. Individual cell strains varied widely from less than 1.0% to over 25% strain within the same group of cells. The increased sensitivity of cells to fluid flow induced shear stress may be attributed to much greater cellular deformations resulting from fluid flow induced sheer stress.


1956 ◽  
Vol 23 (2) ◽  
pp. 269-272
Author(s):  
L. F. Welanetz

Abstract An analysis is made of the suction holding power of a device in which a fluid flows radially outward from a central hole between two parallel circular plates. The holding power and the fluid flow rate are determined as functions of the plate separation. The effect of changing the proportions of the device is investigated. Experiments were made to check the analysis.


2012 ◽  
Vol 7 (1) ◽  
pp. 13-22
Author(s):  
Volodymyr V. Cherniuk

Abstract In the differential equation of variable flow rate fluid flow a component which takes into account outer hydrodynamic pressure is introduced. The variables of the equation are expressed in terms of full operating head and in terms of independent distance along the axis of the stream, i. e. this equation is reduced to a singlevariable equation.


Sign in / Sign up

Export Citation Format

Share Document