scholarly journals A BRIEF REVIEW ON ZIKA VIRUS INFECTION

Author(s):  
Maria Fernanda Rios Grassi ◽  
Antônio Carlos Albuquerque Bandeira ◽  
Luana Leandro Gois ◽  
Geraldo Gileno de Sá Oliveira

Since isolation of Zika virus (ZIKV) in Uganda from Zika forest in the 1947, for sixty years the virus has caused only scattered human cases in Africa and Southeast Asia. From 2007, outbreaks with an increasing number of cases, including cases with neurological manifestations, have been occurring in Pacific islands. In 2015, ZIKV reached Brazil with an explosive number of cases and a severe neurological impact on fetuses and newborns. The natural history and several immunological aspects of ZIKV infection need to be characterized. In this review it is summarized the spread of ZIKV around the world and pointed out some gaps on the immunological knowledge related to the infection. The characterization of the immunodominant/protective immune response would contribute to vaccine and diagnosis tests development.

Author(s):  
Leticia Cristina S. Monteiro ◽  
João Luiz da Silva Filho ◽  
Jose Luiz Proença Modena ◽  
Fabio T. M. Costa

Zika virus (ZIKV) represents a public health challenge to Brazil and the rest of the world, especially because ZIKV infection has been linked to neurological sequelae, such as congenital fetal syndrome. Here, we aim to verify the role of Gas6 in the pathogenesis of ZIKV infection, by evaluating the expression of Gas6 and TAM receptors in patients infected by the virus with different degrees of disease severity, and infection of different human cells in vitro.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Huarong Huang ◽  
Shihua Li ◽  
Yongli Zhang ◽  
Xiaojuan Han ◽  
Baoqian Jia ◽  
...  

ABSTRACT Zika virus (ZIKV) infection causees neurologic complications, including Guillain-Barré syndrome in adults and central nervous system (CNS) abnormalities in fetuses. We investigated the immune response, especially the CD8+ T cell response in C57BL/6 (B6) wild-type (WT) mice, during ZIKV infection. We found that a robust CD8+ T cell response was elicited, major histocompatibility complex class I-restricted CD8+ T cell epitopes were identified, a tetramer that recognizes ZIKV-specific CD8+ T cells was developed, and virus-specific memory CD8+ T cells were generated in these mice. The CD8+ T cells from these infected mice were functional, as evidenced by the fact that the adoptive transfer of ZIKV-specific CD8+ T cells could prevent ZIKV infection in the CNS and was cross protective against dengue virus infection. Our findings provide comprehensive insight into immune responses against ZIKV and further demonstrate that WT mice could be a natural and easy-access model for evaluating immune responses to ZIKV infection. IMPORTANCE ZIKV infection has severe clinical consequences, including Guillain-Barré syndrome in adults, microcephaly, and congenital malformations in fetuses and newborn infants. Therefore, study of the immune response, especially the adaptive immune response to ZIKV infection, is important for understanding diseases caused by ZIKV infection. Here, we characterized the CD8+ T cell immune response to ZIKV in a comprehensive manner and identified ZIKV epitopes. Using the identified immunodominant epitopes, we developed a tetramer that recognizes ZIKV-specific CD8+ T cells in vivo, which simplified the detection and evaluation of ZIKV-specific immune responses. In addition, the finding that tetramer-positive memory CD8+ T cell responses were generated and that CD8+ T cells can traffic to a ZIKV-infected brain greatly enhances our understanding of ZIKV infection and provides important insights for ZIKV vaccine design.


2019 ◽  
Vol 5 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Pierre Tonnerre ◽  
Juliana G. Melgaço ◽  
Almudena Torres-Cornejo ◽  
Marcelo A. Pinto ◽  
Constanze Yue ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Amelia K. Pinto ◽  
Mariah Hassert ◽  
Xiaobing Han ◽  
Douglas Barker ◽  
Trevor Carnelley ◽  
...  

The closely related flaviviruses, dengue and Zika, cause significant human disease throughout the world. While cross-reactive antibodies have been demonstrated to have the capacity to potentiate disease or mediate protection during flavivirus infection, the mechanisms responsible for this dichotomy are still poorly understood. To understand how the human polyclonal antibody response can protect against, and potentiate the disease in the context of dengue and Zika virus infection we used intravenous hyperimmunoglobulin (IVIG) preparations in a mouse model of the disease. Three IVIGs (ZIKV-IG, Control-Ig and Gamunex®) were evaluated for their ability to neutralize and/or enhance Zika, dengue 2 and 3 viruses in vitro. The balance between virus neutralization and enhancement provided by the in vitro neutralization data was used to predict the IVIG concentrations which could protect or enhance Zika, and dengue 2 disease in vivo. Using this approach, we were able to define the unique in vivo dynamics of complex polyclonal antibodies, allowing for both enhancement and protection from flavivirus infection. Our results provide a novel understanding of how polyclonal antibodies interact with viruses with implications for the use of polyclonal antibody therapeutics and the development and evaluation of the next generation flavivirus vaccines.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Yuyi Huang ◽  
Yujie Wang ◽  
Shuhui Meng ◽  
Zhuohang Chen ◽  
Haifan Kong ◽  
...  

Recent studies have indicated that the Zika virus (ZIKV) has a significant impact on the fetal brain, and autophagy is contributing to host immune response and defense against virus infection. Here, we demonstrate that ZIKV infection triggered increased LC3 punctuation in mouse monocyte-macrophage cell line (RAW264.7), mouse microglial cell line (BV2), and hindbrain tissues, proving the occurrence of autophagy both in vitro and in vivo. Interestingly, manual intervention of autophagy, like deficiency inhibited by 3-MA, can reduce viral clearance in RAW264.7 cells upon ZIKV infection. Besides, specific siRNA strategy confirmed that autophagy can be activated through Atg7-Atg5 and type I IFN signaling pathway upon ZIKV infection, while knocking down of Atg7 and Atg5 effectively decreased the ZIKV clearance in phagocytes. Furthermore, we analyzed that type I IFN signaling could contribute to autophagic clearance of invaded ZIKV in phagocytes. Taken together, our findings demonstrate that ZIKV-induced autophagy is favorable to activate host immunity, particularly through type I IFN signaling, which participates in host protection and defense against ZIKV infection.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Thomas E. Morrison ◽  
Michael S. Diamond

ABSTRACT Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that now causes epidemics affecting millions of people on multiple continents. The virus has received global attention because of some of its unusual epidemiological and clinical features, including persistent infection in the male reproductive tract and sexual transmission, an ability to cross the placenta during pregnancy and infect the developing fetus to cause congenital malformations, and its association with Guillain-Barré syndrome in adults. This past year has witnessed an intensive effort by the global scientific community to understand the biology of ZIKV and to develop pathogenesis models for the rapid testing of possible countermeasures. Here, we review the recent advances in and utility and limitations of newly developed mouse and nonhuman primate models of ZIKV infection and pathogenesis.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 598 ◽  
Author(s):  
Elizabeth Caine ◽  
Brett Jagger ◽  
Michael Diamond

Zika virus (ZIKV) emerged suddenly in the Americas in 2015 and was associated with a widespread outbreak of microcephaly and other severe congenital abnormalities in infants born to mothers infected during pregnancy. Vertical transmission of ZIKV in humans was confirmed when viral RNA was detected in fetal and placental tissues, and this outcome has been recapitulated experimentally in animals. Unlike other flaviviruses, ZIKV is both arthropod- and sexually-transmitted, and has a broad tissue tropism in humans, including multiple tissues of the reproductive tract. The threats posed by ZIKV have prompted the development of multiple in vivo models to better understand the pathogenesis of ZIKV, particularly during pregnancy. Here, we review the progress on animal models of ZIKV infection during pregnancy. These studies have generated a foundation of insights into the biology of ZIKV, and provide a means for evaluating vaccines and therapeutics.


Sign in / Sign up

Export Citation Format

Share Document