scholarly journals Synthesis and experimental study of liquid dispersions of magnetic fluorescent polystyrene microspheres

Author(s):  
Pavel V. Shalaev ◽  
Ekaterina V. Bondina ◽  
Natalya N. Sankova ◽  
Ekaterina V. Parkhomchuk ◽  
Sergey A. Dolgushin

Multiplex microsphere-based immunofluorescence assay is a reliable, accurate, and highly sensitive method for the detection of various biomolecules. However, for the moment, the wide application of the method in clinical practice is prevented by the high cost of reagents for analysis - magnetic spectrally encoded microspheres. Therefore, an urgent task is the development of new methods for the synthesis of microspheres with the required properties. The aim of this study was the creation of new magnetic fluorescent microspheres suitable for use in multiplex immunoassay.Samples of magnetic fluorescent polystyrene microspheres were synthesized by dispersion polymerization and two-stage swelling methods. Experimental studies of geometric parameters, fluorescence, magnetic properties of the synthesized microspheres have been carried out.The results of the studies have shown that microspheres synthesized by dispersion polymerization are promising for the use in immunofluorescence analysis. The obtained results can be used for the development of new diagnostic multiplex test systems based on spectrally encoded microspheres.

Author(s):  
Dmitry A. Neganov ◽  
◽  
Victor M. Varshitsky ◽  
Andrey A. Belkin ◽  
◽  
...  

The article contains the comparative results of the experimental and calculated research of the strength of a pipeline with such defects as “metal loss” and “dent with groove”. Two coils with diameter of 820 mm and the thickness of 9 mm of 19G steel were used for full-scale pipe sample production. One of the coils was intentionally damaged by machining, which resulted in “metal loss” defect, the other one was dented (by press machine) and got groove mark (by chisel). The testing of pipe samples was performed by applying static internal pressure to the moment of collapse. The calculation of deterioration pressure was carried out with the use of national and foreign methodical approaches. The calculated values of collapsing pressure for the pipe with loss of metal mainly coincided with the calculation experiment results based on Russian method and ASME B31G. In case of pipe with dent and groove the calculated value of collapsing pressure demonstrated greater coincidence with Russian method and to a lesser extent with API 579/ASME FFS-1. In whole, all calculation methods demonstrate sufficient stability of results, which provides reliable operation of pipelines with defects.


2019 ◽  
Vol 24 (3) ◽  
pp. 196-202 ◽  
Author(s):  
S. A. Abdurakhmanova ◽  
G. S. Runova ◽  
M. S. Podporin ◽  
E. V. Tsareva ◽  
E. V. Ippolitov ◽  
...  

Relevance: Inflammatory-destructive periodontal diseases are the most complicated and became the main cause of tooth loss in adult population. Herbal medicines have a variety of pharmacological properties, so the development and introduction of new forms for the treatment of inflammatory periodontal diseases is an urgent task today.Purpose – experimental evaluation of effectiveness of the use of herbal medicines “Tonzinal” and “CM-1” in relation to the priority periodontal pathogenes.Materials and methods: in experimental studies, the basis for the experiment was the system for the cultivation of microorganisms in real time – the Revers-Spinner RTS-1 bioreactor. With the priority strains of periodontitis pathogens, the study of the growth dynamics of the culture was carried out in several parallels.Results: herbal medicines “CM-1” and “Tonsinal” has a multilateral therapeutic effect, exerting a diverse influence on the key stages of development of such bacterial populations as Aggregatibacter actinomycetemcomitans, Streptococcus constellatus, Candida albicans.Conclusion: tan integrated approach in the treatment of patients with inflammatory periodontal diseases is promising and will contribute to a more prolonged remission and increase the effectiveness of treatment. 


2021 ◽  
Vol 11 (2) ◽  
pp. 93
Author(s):  
Jihye Ryu ◽  
Tami Bar-Shalita ◽  
Yelena Granovsky ◽  
Irit Weissman-Fogel ◽  
Elizabeth B. Torres

The study of pain requires a balance between subjective methods that rely on self-reports and complementary objective biometrics that ascertain physical signals associated with subjective accounts. There are at present no objective scales that enable the personalized assessment of pain, as most work involving electrophysiology rely on summary statistics from a priori theoretical population assumptions. Along these lines, recent work has provided evidence of differences in pain sensations between participants with Sensory Over Responsivity (SOR) and controls. While these analyses are useful to understand pain across groups, there remains a need to quantify individual differences more precisely in a personalized manner. Here we offer new methods to characterize pain using the moment-by-moment standardized fluctuations in EEG brain activity centrally reflecting the person’s experiencing temperature-based stimulation at the periphery. This type of gross data is often disregarded as noise, yet here we show its utility to characterize the lingering sensation of discomfort raising to the level of pain, individually, for each participant. We show fundamental differences between the SOR group in relation to controls and provide an objective account of pain congruent with the subjective self-reported data. This offers the potential to build a standardized scale useful to profile pain levels in a personalized manner across the general population.


2021 ◽  
pp. 43-48
Author(s):  

Improving the system of preventive measures aimed at reducing the severity of the consequences of road accidents is an urgent task. Road deaths are constantly increasing and there is a need for a comprehensive approach to creating safe road conditions. The purpose of this study is to analyze the promising designs of road barriers designed to prevent uncontrolled exit of vehicles from the roadway of the highway and to develop the design of energy-absorbing fencing. Barrier barriers must not only be safe for road users, but must also ensure their safety, as well as preserve the elements after hitting the fence. Analytical studies have shown that in order to reduce mechanical damage to vehicles and reduce the severity of injuries to the driver and passengers, it is necessary to develop a road fence design that allows you to extinguish the impact energy at the moment of contact between the car and the fence. Keywords: fencing, barrier, safety, traffic accident


Author(s):  
Екатерина Александровна Витоженц ◽  
Александр Викторович Кобелев

Предложен новый способ контроля введения инъекционной иглы в просвет вены на основе измерений электрического импеданса с помощью смешанной системы электродов, состоящей из биполярного и тетраполярного звеньев. Исследованы альтернативные схемы расположения электродов при проведении контроля венозной пункции биоимпедансным методом - они имеют более сложную конструкцию, используют дорогостоящие специализированные коаксиальные иглы, не позволяют однозначно определить факт прокола стенки венозного сосуда, нуждаются в дополнительной фильтрации регистрируемого сигнала с целью корректной интерпретации результата. Эффективность предложенной методики проверялась в ходе экспериментальных исследований на 5 добровольцах. Результаты экспериментов позволили идентифицировать 4 стадии нахождения инъекционной иглы относительно верхней конечности: нет касания, касание кожного покрова, нахождение под кожей коже, попадание в просвет вены. Идентификация положений инъекционной иглы происходит в реальном времени без дополнительной фильтрации регистрируемого сигнала. Метод позволяет обнаружить момент прокола стенки венозного сосуда стандартной инъекционной иглой, что в дальнейшем позволит сэкономить на изготовлении специализированных многослойных игольчатых электродов и внедрить данный способ контроля за проведением венепункции в медицинскую практику. Дальнейшее развитие предложенного подхода предполагает идентификацию двойного прокола вены, дифференцирование типа ткани в процессе введения иглы и исследование возможности определения типа кровеносного сосуда A new method for controlling the penetration of an injection needle into the vein based on measurements of electrical impedance using a mixed system of electrodes consisting of bipolar and tetrapolar parts is proposed. Alternative schemes for the arrangement of electrodes for monitoring venous puncture using the bioimpedance method have been investigated - they have a more complex design, use expensive specialized coaxial needles, do not allow to unambiguously determine the fact of a puncture of the venous vessel wall, require additional filtering of the recorded signal in order to correctly interpret the result. The effectiveness of the proposed technique was tested in experimental studies on 5 volunteers. The results of the experiments made it possible to identify 4 stages of finding the injection needle relative to the upper limb: no touching, touching the skin, being under the skin of the skin, getting into the lumen of the vein. Identification of the positions of the injection needle occurs in real time without additional filtering of the recorded signal. The method allows detecting the moment of puncture of the wall of a venous vessel with a standard injection needle, which in the future will save on the manufacture of specialized multilayer needle electrodes and introduce this method of monitoring venipuncture into medical practice. Further development of the proposed approach involves the identification of a double vein puncture, differentiation of tissue type during needle insertion, and investigation of the possibility of determining the type of blood vessel


2021 ◽  
Vol 266 ◽  
pp. 03005
Author(s):  
D. N. Shabanov ◽  
E. Trambitsky ◽  
E. Borovkova

This article describes the structural studies of a cement conglomerate, its evolution from the moment of formation to the loss of operational properties. Physical and chemical phenomena and interactions of various elements of cement stone are considered. The study of its rheology includes creating a virtual model and monitoring the formation of the structure of cement pastes by acoustic emission (AE). The results of combined experimental studies to determine the residual life of cement stone samples using AE and tensometry methods are presented. The authors created a complex for monitoring the stress-strain state of artificial conglomerates, which includes both internal and acoustic sensors.


Author(s):  
Anton А. Artamonov ◽  
Еvgeny Plotnikov

The paper addresses physics of thermodynamic fluctuations in temperature and energy. These fluctuations are interrelated and, hence, can affect various micro- and macro systems. It is shown that the thermodynamic uncertainty relation must be taken into account in the physics of superconductivity, in quantum computations and other branches of science, where temperature and energy fluctuations play a critical role. One of the most important applications of quantum thermodynamics is quantum computers. It is assumed that in the near future the state structures will create a specific quantum cryptocurrency obtained using quantum computing. The quantum cryptocurrency exhibits two main features: the maximum reliability (quantum protection against hacking threats) and the possibility of state control (at the moment, only large scientific state centers have quantum computers). The paper reviews the studies aimed to theoretically prove the validity of the thermodynamic uncertainty relation. This relation connects fluctuations in temperature and energy of a system. Other similar relations are considered, including the relationship between fluctuations in pressure and volume, in entropy and temperature, and others. The main purpose of the paper is to validate the thermodynamic analogue of the uncertainty relation that interconnects temperature and energy fluctuations. Experimental data was obtained on the basis of the study of the transport properties of semiconductor devices – transistors. In the experiment, the transport properties of a pair of semiconductor transistors placed on a single silicon crystal were studied. In this system, one transistor was used to determine temperature fluctuations, and the other one was employed to estimate energy fluctuations. The key role of the thermodynamic uncertainty relation in modern thermodynamics has been clarified. The performed experimental studies confirm the validity of the thermodynamic uncertainty relation.


Author(s):  
Parfentiev Nikolay Andreevich

A special point was found in the frequency characteristics of the oscillatory circuit, which was not mentioned earlier in textbooks on electrical engineering and radio engineering. The module of complex resistance of the circuit does not depend on the value of the active resistance at a frequency less than  times that of the resonance. The material is of interest to all engineers and scientists specializing in electrical engineering. On its basis, new methods for measuring the parameters of electrical circuits can be developed. Physical interpretation of the phenomenon doesn't exist at the moment.


2021 ◽  
Vol 2077 (1) ◽  
pp. 012021
Author(s):  
I N Starkov ◽  
K A Rozhkov ◽  
T V Olshanskaya ◽  
D N Trushnikov ◽  
I A Zubko

Abstract The direction of electron beam technologies is promising and is rapidly developing. Quite recently, the electron beam was a tool for welding, and nowadays, electron-beam additive technologies and beam hardening technologies have become widespread. At the moment, there is no electron beam system that unites all these technologies. Expensive equipment has been developed to implement each technology. The article deals with expanding the technological capabilities of the 15E1000 electron-beam welding installation in order to implement new methods and techniques for processing metals with an electron beam.


Author(s):  
V.A. Altunin ◽  
K.V. Altunin ◽  
M.R. Abdullin ◽  
M.R. Chigarev ◽  
I.N. Aliev ◽  
...  

Relying on the review and analysis of scientific and technical literature, as well as the results of experimental studies, we developed new methods for calculating thermal processes occurring in gaseous methane during its natural convection, under the influence of electrostatic fields. In this study we show methods for calculating and determining the coefficients of heat transfer to gaseous methane under the influence of electric wind, as well as methods for calculating and determining the effect of electrostatic fields on the negative process of sedimentation on a heated experimental working plate in the volume of gaseous methane. A general method has been developed for the effective and safe application of electrostatic fields in gaseous methane, which must be carried out in the calculations, design, creation, and operation of new engines, power plants, and techno systems for single and reusable ground, air, aerospace and space-based aircraft.


Sign in / Sign up

Export Citation Format

Share Document