THE EFFECT OF PLACEMENT OF L-TYPE SHEAR WALLS IN RC STRUCTURES ON STRUCTURAL BEHAVIOR

2021 ◽  
Vol 0 (15) ◽  
pp. 0-0
Author(s):  
Muhammet Zeki ÖZYURT

Aim: In this study; In this study, it was investigated how the symmetrical and different positions of the L-type shear walls on the floor plan affect the structural behavior in the reinforced concrete residential and office buildings with a symmetrical structural system. Method: In the study, three different carrier system types were created for a symmetrical reinforced concrete structure with 5 floors (ground floor + 4 normal floors), according to the shear wall layouts, and on a total of 12 different models (ground floor heights of 2.5 m, 3.0 m, 4.0 m and 5 m) was examined. Results: It was determined that as the ground floor height increased, the natural vibration period, soft floor irregularity coefficient and peak displacement value also increased in all models examined in the study. It has been observed that the natural vibration period is greater when the shear walls are located at the corners of the outer axles than if they are located in the middle of the outer axles and in the inner axles. It has been observed that in all cases of ground floor height, the number of soft floor irregularities in the corner shear wall layout model on the outer axes is approximately 0.2% higher than in the Type 2 situation. Conclusion: In this study, for the 5-storey reinforced concrete structures used for workplace and residential purposes, whose structural system is determined symmetrically so that torsional irregularity does not occur, the results obtained by changing the placement of L-section shear walls in the plan, drew attention to the fact that the position of the shear wall affects the structural behavior. For buildings with a ground floor height less than or equal to the normal floors, the most appropriate shear wall placement is when the shear walls are on the outer axes and in the corner. For buildings with a ground floor height higher than normal floors, the most appropriate shear wall placement takes place on the inner axes of the building.

2021 ◽  
Vol 7 (3) ◽  
pp. 151
Author(s):  
Başak Zengin

Since the ground floor of most of the buildings in our country is designed as a shop or ground floor (in the buildings created as a workplace), there is very little infill wall ratio on the ground floors due to architectural and functional reasons, and some of them do not even exist at all. However, infill walls significantly increase the horizontal rigidity and strength of the structure, thus causing a decrease in the period value that determines the earthquake loads that will affect the structure. However, the infill wall meets the first destructive forces of the earthquake, and during this time, it cracks and absorbs some of the earthquake energy. The structural system elements of the building (columns and shear walls) start to meet the earthquake forces only when the infill walls are damaged and fail. In this direction, the aim of this study is to investigate to what extent the amount of infill wall on the ground floor affects the period of the building, and whether there are soft storey irregularities in the building according to the change in the amount of infill wall on the ground floor. In this study, while there are infill walls on all floors and all axes of buildings of various heights (3, 6, 9 and 11 floors), the amount of infill walls in the x and y directions on the ground floors is reduced to a certain extent, and many models are created until the ground floor is completely without infill walls. All these models created were analyzed with the support of the SAP2000 program, and the period values were determined and examined according to the soft storey problems and compared with the case of the entire building with and without infill walls. In addition, it was examined whether the period formulas determined as a result of the studies and taking into account the infill wall give realistic results for the situation examined in this study.


2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.


Author(s):  
T. Paulay

To enable a comparison between the shear strength of shear walls and that of reinforced concrete beams to be made, the behaviour of the latter is briefly reviewed. The findings of research projects, related to deep beams and the effects of repeated cyclic loading, are summarised. More detailed information on the shear strength of deep beams, tested at the University of Canterbury, is presented, Particular problems associated with four classes of typical shear walls of multi-storey structures are briefly highlighted. The current recommendation of the
 SEAOC code, as applied to shear walls, are critically examined and certain
anomalies, which may ensue from their interpretation, are illustrated. Areas of research, related to the full evaluation of reinforced concrete shear wall
 behaviour, are suggested. The paper concludes with a number of design recommendations which suggest themselves from this review.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mehmet Inel ◽  
Hayri Baytan Ozmen ◽  
Bayram Tanik Cayci

Determining the dynamic properties of structures is important for understanding their seismic behaviour. Ambient vibration signal measurement is one of the approaches used to determine the period of structures. Advantages of this method include the possibility of taking real-time records and presenting nondestructive and rapid solutions. In this study, natural vibration periods are calculated by taking ambient vibration signal records from 40 buildings. The height of the building, infill wall effect, presence of seismic retrofit, and presence of damage are taken into consideration, and their effects on natural vibration periods are investigated. Moreover, the results are compared with the analytical methods to reveal the differences. A significant correlation between the period and height of the building is observed. It is seen that the natural vibration periods of the buildings decrease by 7% to 30% (15% on average) due to infill wall contribution. However, the efficiency of infill walls decreases as the building height increases. Another significant result is that adding shear walls substantially decreases the vibration period values by 23% to 33% with respect to the shear wall ratio. When the analytical estimates and measured building period results are compared, it is seen that analytical models have closer period estimates before infill walls are implemented. The limited data in scope of the study suggest that significant differences may present in the analytical and measured periods of the buildings due to infill wall contributions.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940002 ◽  
Author(s):  
Yao Chen ◽  
Qian Zhang ◽  
Jian Feng ◽  
Zhe Zhang

This study presents shear resistance of precast reinforced concrete (RC) shear walls. A novel assembling method for upper and lower wall panels is proposed, whereas vertical steel bars are grouped into bundles and effectively connected in preformed holes. To evaluate the feasibility and shear resistance of such a connection method, three specimens of precast shear walls with different horizontal steel bars have been constructed and tested under monotonic loading while subjected to a constant vertical compression. The results show that cracks mainly appear under the line that connects the midpoint of tension side and the corner of the compression side. The weak section of these shear walls is at the top of the preformed holes, and through cracks do not appear at the bottom of walls. These innovative precast shear walls are reliable, and no rebar is pulled out or seriously slipped. The yield load of the shear wall is great, and the stage between yield and failure is satisfactory. The bearing capacity declines slowly after the peak value.


2009 ◽  
Vol 4 (3) ◽  
pp. 246-252
Author(s):  
Akifumi Makino ◽  

This paper details the design of a high-rise reinforced concrete building whose top floor is isolated and used as the mass for a large-scale mass damper, describing the effect of the vibration control realized. Conventional mass dampers with additional weight at the building tops have been installed to improve environmental vibration against strong wind. Mass dampers have rarely been used, however, as measure against earthquakes. We developed large-scale vibration control using the top floor building weight to serve as a mass damper. The building is a high-rise reinforced concrete structure, 162 meters high, with 43 above-ground stories. Based on seismic response analysis using artificial earthquake waves, the natural vibration period of the mass damper was tuned to decrease story drift in the entire building. The mass damper reduced maximum story drift angle by 20%.


2012 ◽  
Vol 594-597 ◽  
pp. 2464-2469
Author(s):  
Dai Kui

Calculation of Short-leg shear walls structural system is a multi-field coupling problem. Through the research and application of short-leg shear wall structure calculation theory, based on the national codes,the short-leg shear wall design principles are established.It is discussed for the reason of the world's first short-leg shear wall structure design formation and development research. According to short-leg shear wall force characteristics, horizonal displacement is divided into destructive story drift and harmless story drift, the formula for calculating the destructive story drift is obtained, using destructive story drift angle parameters and the change of main section height to control the deformation, to control structural rigidity to ensure the structural design rational purpose.


2010 ◽  
Vol 163-167 ◽  
pp. 1329-1332
Author(s):  
Bin Liang ◽  
Meng Yang

The structural behavior of a steel reinforced concrete (SRC) transfer beam in high-rise building is studied in the paper. Mechanical properties and deformation characteristics between transfer beam and shear wall are analyzed by an analytic approach and the nonlinear finite element method. The stress analytical solutions for the SRC transfer beam are obtained and agree with finite element calculation data in an actual project. The results show that the beam can be as an eccentric tension member, meanwhile the performance of shear wall must be considered. And it also shows that the shear stress and vertical compressed stress must be considered in end both transfer beam and shear wall and there is interaction between the beam and the shear walls above. The results can be used to describe the behavior of the SRC transfer beam under complicated loads.


Sign in / Sign up

Export Citation Format

Share Document