scholarly journals Process Simulation on Fast Pyrolysis of Palm Kernel Shell for Production of Fuel

2019 ◽  
Vol 4 (1) ◽  
pp. 64 ◽  
Author(s):  
Mangala Nayaggy ◽  
Zulfan Adi Putra

As the worlds primary source of energy is depleting, an alternative particularly renewable energy is being explored. This work is a preliminary study on fast pyrolysis process of palm kernel shell to produce liquid fuel. The simulation uses pyrolysis data obtained from one of the previous works on fast pyrolysis of palm kernel shell. As there are no literature available on upgrading of bio oil from fast pyrolysis of palm kernel shell, the chemical reactions are synthesised based on upgrading of bio oil from different biomass. The upgraded oil is then analysed by comparing its distillate curve with that of the ASTM of gasoline. The distillation curves are shown to be quite similar as the components found in the oil almost resemble those in the gasoline. Thus, the bio oil from fast pyrolysis of palm kernel shell has almost similar components compared to the ASTM of gasoline.

2004 ◽  
Vol 8 (2) ◽  
pp. 21-50 ◽  
Author(s):  
Anthony Bridgewater

Bioenergy is now accepted as having the potential to provide the major part of the projected renewable energy provisions of the future. Fast pyrolysis is one of the three main thermal routes, with gasification and combustion, to providing a useful and valuable biofuel. It is one of the most recent renewable energy processes to have been introduced and offers the advantages of a liquid product bio-oil that can be readily stored and trans ported, and used as a fuel, an energy carrier and a source of chemicals. Fast pyrolysis has now achieved commercial success for production of some chemicals, liquid fuel and electricity. Bio-oils have been success fully tested in engines turbines and boilers, and have been upgraded to high quality hydrocarbon fuels although at a presently unacceptable energetic and financial cost. This review concentrates on the technology of pyrolysis and applications for the liquid product. The basic pyrolysis process and the characteristics of the main liquid product bio-oil are first summarized followed by a review of applications for bio-oil. The main technical and non-technical barriers to implementation are identified.


REAKTOR ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 109-116
Author(s):  
Endang Suhendi ◽  
Andre Wibowo ◽  
Tia Lestari ◽  
Teguh Kurniawan

Biooil is the main product in the pyrolysis process which is expected to be a liquid fuel replacement solution. But the resulting biooil cannot be directly used as a result of high oxygenated compounds, high viscosity, corrosive, and unstable. Addition of activated natural zeolite catalyst to the pyrolysis process is expected to improve the quality of biooil in order to be used as a renewable liquid fuel. The research aims to determine the influence of acid concentrations on zeolite modification to the characteristics of pyrolysis products. Result of catalyst characterization indicates that zeolite activation using acid will increase Si/Al ratio as well as open the surface of previously hindered zeolite. The yield of char produced in this study tends not to undergo significant changes between the catalytic and noncatalytic pyrolysis by 33% wt. Addition of zeolite catalyst in pyrolysis proved to be able to increase the content of phenol and decrease the content of acetic acid in bio-oil by 6% . Meanwhile, yield of CO2 increases by 20% in the use of catalysts due to the release of oxygen in the oxygenate compounds. The results of this study showed that the resulting biooil still does not meet the specifications of liquid fuels but can be utilized as a renewable chemical feedstock.Keywords: pyrolysis; biomass; natural zeolite;modified


2014 ◽  
Vol 625 ◽  
pp. 608-611
Author(s):  
Yoshimitsu Uemura ◽  
Ali Norizan ◽  
Hafizah Ahmad Afif ◽  
Norridah Osman ◽  
Wissam N. Omar ◽  
...  

This study investigates the effect of biomass size on the yields of char, liquid (organic compounds and water) and gas for fast pyrolysis of palm kernel shell (PKS). Fast pyrolysis was carried out in a fluidized bed reactor of 108 mm in internal diameter operated at 450 °C using three different sizes of palm kernel shell (0.325, 0.75 and 1.5 mm). In specific the effect of biomass size on the yields of known and unknown organics in bio-oil was mainly investigated. The major organics include acetic acid, phenol and furfural. The minor ones include 2-methylphenol, 4-methylphenol, 2-methylnaphthalene, benzene, toluene and tetrahydrofurane (THF). Smaller biomass sizes were favorable for higher bio-oil yields.


2013 ◽  
Vol 59 ◽  
pp. 316-324 ◽  
Author(s):  
Mohammad Asadullah ◽  
Nurul Suhada Ab Rasid ◽  
Sharifah Aishah Syed A. Kadir ◽  
Amin Azdarpour

2019 ◽  
Vol 797 ◽  
pp. 359-364
Author(s):  
Deana Qarizada ◽  
Erfan Mohammadian ◽  
Azil Bahari Alis ◽  
Suriatie Mat Yusuf ◽  
Aqilah Dollah ◽  
...  

Thermo distillation of palm kernel shell in a column reactor was studied in this paper. The objective of this research was to characterize the bio oil and bio oil fractions. The maximum yield was around 70 wt% at 120 °C. The bio oil fractions were collected in ten columns at different temperature ranging between 75- 105°C. HHV of bio oil was 26MJ/Kg. The bio oil moisture, volatility, fixed carbon, and ash were determined and found to be around 6.44wt%, 52.72wt%, 24.39wt%, 16.45wt%, respectively. It can be seen that the PKS bio oil can be considered as an alternative fuel. . HHV of bio oil fraction was between 20- 21MJ/Kg, The density of bio oil fraction was 976.54 g/ mL, and pH of bio oil fraction were around of 2.16.


2021 ◽  
Vol 148 ◽  
pp. 106034
Author(s):  
Rahmad Mohd Taib ◽  
Nurhayati Abdullah ◽  
Nur Syairah Mohamad Aziz

2020 ◽  
Vol 5 (2) ◽  
pp. 151
Author(s):  
Rafiqi Rajauddin Amin ◽  
Rimbi Rodiyana Sova ◽  
Dewinta Intan Laily ◽  
Dina Kartika Maharani

The rapid development of industry causes the need for fuel and energy to increase, especially fossil fuels (petroleum). This has the effect of an energy crisis. Biomass is of particular concern as one of the renewable energy sources to address the current energy crisis.  Biomass consists of hemiselulose, cellulose, and lignin that can be converted into liquids (bio-oils) of pyrolysis. One of the wastes that can be converted into bio-oil is tobacco waste. Tobacco waste is produced by more than 2 million tons eachs. The waste has the potential to be further processed into bio oil using fast pyrolysis method with efficient and quality bio-oil manufacturing measures. The bio-oil results from tobacco waste using the fast pyrolysis method have values of carbon, hydrogen, nitrogen, oxygen and other organic compounds and the H/C ratio is greater than the yield of tobacco waste bio-oil using the low pyrolysis method. Where the bio-oil of tobacco waste using the fast pyrolysis method has a high heating value equivalent to the distribution of hydrocarbons from biodiesel, which means it has the potential as an alternative energy to replace petroleum. The potential as a substitute fuel for petroleum must also be balanced with fast and efficient production, maximizing bio-oil production by selecting the reactor and the optimum temperature usedKeywords: Waste, Tobacco, Bio-Oil, Renewable Energy, Fast-pyrolisis


Author(s):  
Deana Qarizada ◽  
Erfan Mohammadian ◽  
Azil Bahari Alias ◽  
Humapar Azhar Rahimi ◽  
Suriatie Binti Mat Yusuf

Distillation is an essential thermo chemical process; it mainly depends on temperature which affects mostly the product yield and composition. The aim of this research is to investigate the effect of temperature on the characterization of bio-oil liquid fraction derived from palm kernel shell (PKS) bio-oil. The temperatures were 100 °C and 140°C. The higher heating value (HHV) obtained were 28.6MJ/Kg and 31.5MJ/Kg for bio-oil fraction 100°C and 140°C respectively. The GC- MS analysis determined that phenol is the dominant product in bio-oil fractions.


2019 ◽  
Vol 11 (11) ◽  
pp. 5877-5889 ◽  
Author(s):  
Harvindran Vasu ◽  
Choon Fai Wong ◽  
Navin Raj Vijiaretnam ◽  
Yen Yee Chong ◽  
Suchithra Thangalazhy-Gopakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document