scholarly journals Biomass fast pyrolysis

2004 ◽  
Vol 8 (2) ◽  
pp. 21-50 ◽  
Author(s):  
Anthony Bridgewater

Bioenergy is now accepted as having the potential to provide the major part of the projected renewable energy provisions of the future. Fast pyrolysis is one of the three main thermal routes, with gasification and combustion, to providing a useful and valuable biofuel. It is one of the most recent renewable energy processes to have been introduced and offers the advantages of a liquid product bio-oil that can be readily stored and trans ported, and used as a fuel, an energy carrier and a source of chemicals. Fast pyrolysis has now achieved commercial success for production of some chemicals, liquid fuel and electricity. Bio-oils have been success fully tested in engines turbines and boilers, and have been upgraded to high quality hydrocarbon fuels although at a presently unacceptable energetic and financial cost. This review concentrates on the technology of pyrolysis and applications for the liquid product. The basic pyrolysis process and the characteristics of the main liquid product bio-oil are first summarized followed by a review of applications for bio-oil. The main technical and non-technical barriers to implementation are identified.

2019 ◽  
Vol 4 (1) ◽  
pp. 64 ◽  
Author(s):  
Mangala Nayaggy ◽  
Zulfan Adi Putra

As the worlds primary source of energy is depleting, an alternative particularly renewable energy is being explored. This work is a preliminary study on fast pyrolysis process of palm kernel shell to produce liquid fuel. The simulation uses pyrolysis data obtained from one of the previous works on fast pyrolysis of palm kernel shell. As there are no literature available on upgrading of bio oil from fast pyrolysis of palm kernel shell, the chemical reactions are synthesised based on upgrading of bio oil from different biomass. The upgraded oil is then analysed by comparing its distillate curve with that of the ASTM of gasoline. The distillation curves are shown to be quite similar as the components found in the oil almost resemble those in the gasoline. Thus, the bio oil from fast pyrolysis of palm kernel shell has almost similar components compared to the ASTM of gasoline.


2020 ◽  
Vol 5 (2) ◽  
pp. 151
Author(s):  
Rafiqi Rajauddin Amin ◽  
Rimbi Rodiyana Sova ◽  
Dewinta Intan Laily ◽  
Dina Kartika Maharani

The rapid development of industry causes the need for fuel and energy to increase, especially fossil fuels (petroleum). This has the effect of an energy crisis. Biomass is of particular concern as one of the renewable energy sources to address the current energy crisis.  Biomass consists of hemiselulose, cellulose, and lignin that can be converted into liquids (bio-oils) of pyrolysis. One of the wastes that can be converted into bio-oil is tobacco waste. Tobacco waste is produced by more than 2 million tons eachs. The waste has the potential to be further processed into bio oil using fast pyrolysis method with efficient and quality bio-oil manufacturing measures. The bio-oil results from tobacco waste using the fast pyrolysis method have values of carbon, hydrogen, nitrogen, oxygen and other organic compounds and the H/C ratio is greater than the yield of tobacco waste bio-oil using the low pyrolysis method. Where the bio-oil of tobacco waste using the fast pyrolysis method has a high heating value equivalent to the distribution of hydrocarbons from biodiesel, which means it has the potential as an alternative energy to replace petroleum. The potential as a substitute fuel for petroleum must also be balanced with fast and efficient production, maximizing bio-oil production by selecting the reactor and the optimum temperature usedKeywords: Waste, Tobacco, Bio-Oil, Renewable Energy, Fast-pyrolisis


2018 ◽  
Vol 237 ◽  
pp. 02001 ◽  
Author(s):  
Dewi Selvia Fardhyanti ◽  
Megawati ◽  
Cepi Kurniawan ◽  
Retno Ambarwati Sigit Lestari ◽  
Bayu Triwibowo

The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio–oil. Bio–oil is a liquid which produced by steam condensation process from the pyrolysis of coconut shell. The composition of biomass such as hemicellulose, cellulose and lignin will be oxidized to phenol as the main content of the bio–oil. Production of bio–oil from coconut shell was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. The Bio-oil chemical composition was investigated using GC–MS. Percentage value of phenol, 2–methoxy phenol, 3–methoxy 1,2–benzenediol, and 2,6–dimethoxy phenol was 45.42%, 13.37%, 10.09%, and 11.72% respectively.


2021 ◽  
Author(s):  
Vittor Rodrigues Santos Alves

The reduction of environmental impacts caused by emissions of greenhouse gases has become an internationalized goal. In this context the development of technologies capable of producing energy from clean or renewable sources has gained broad prominence, among them the fast pyrolysis is a type of thermochemical process capable of converting biomass and agroindustrial waste into a liquid product called bio-oil that has a wide range of applications in the bioenergy scenario. For this type of technology to be consolidated as an alternative source of renewable energy, economic, political and environmental incentives are necessary, as well as research development to improve the conversion processes, such as reactor types, logistics in obtaining and pre-treating potential biomass, improvement and conversion routes for bio-oil obtained in renewable biofuels or chemicals with higher added value. This chapter covers the fundamentals of thermal conversion of biomass into bio-oil and the most studied processes to convert bio-oil into a product with better properties, such as deoxygenation and energy densification.


2014 ◽  
Vol 625 ◽  
pp. 255-258 ◽  
Author(s):  
Nga Tran ◽  
Yoshimitsu Uemura ◽  
Sujan Chowdhury ◽  
Anita Ramli

Fast pyrolysis is an attractive thermal conversion process to generate the alternative liquid fuel. However, the bio-oil obtained from biomass pyrolysis has polarity, instability and low energy density due to contained oxygenated compound. Hydrodeoxygenation (HDO) process is the most promising route for bio-oil upgrading through oxygen elimination. The products are suitable for co-feeding into the existing refineries. Metal catalyst and operating conditions play an important role in HDO efficiency. A summary of HDO process has been conducted with various metal catalysts, type of reactors, and reaction mechanisms. It also raises some challenges in improving catalyst efficiency, reducing hydrogen consumption, and effort to understand the HDO kinetics.


2013 ◽  
Vol 827 ◽  
pp. 25-29 ◽  
Author(s):  
Hang Tao Liao ◽  
Xiao Ning Ye ◽  
Qiang Lu ◽  
Chang Qing Dong

Fast pyrolysis of biomass to produce bio-oil is an important technology to utilize lignocellulosic biomass, because the liquid bio-oil is regarded as a promising candidate of petroleum fuels. However, bio-oil is a low-grade liquid fuel, and required to be upgraded before it can be directly utilized in existing thermal devices. Catalytic cracking is an effective way to upgrade bio-oil, which can be performed either on the liquid bio-oil or the pyrolysis vapors. Various catalysts have been prepared and used for catalytic cracking, and they exhibited different catalytic capabilities. This paper will review the recent progress of the catalytic cracking of liquid bio-oil or pyrolysis vapors.


2012 ◽  
Vol 608-609 ◽  
pp. 428-432
Author(s):  
Shun Tan ◽  
Zhi Jun Zhang ◽  
Jian Ping Sun ◽  
Qing Wen Wang

Biomass can be converted to a variety of fuels and chemicals by different technologies, one of them is fast pyrolysis which offers a convenient way to convert biomass mainly into a liquid product known as bio-oil. Bio-oils must be upgraded if they are to be used as a replacement for diesel and gasoline fuels. This review presents a summary of recent research in catalysts which were used in biomass pyrolysis, focusing on the catalysts applied, upgrading methods and reaction mechanisms.


2014 ◽  
Vol 906 ◽  
pp. 142-147 ◽  
Author(s):  
Nurul Suhada Ab Rasid ◽  
M. Asadullah

The increasing demand of energy has led to the development of renewable energy in order to mitigate the dependency of fossil fuels. Fast pyrolysis of biomass is one of the most anticipated renewable energy technologies since it has a huge potential to become the efficient, environmentally sustainable, and cost effective technology for energy. Fast pyrolysis process produces liquid bio-oil as a main product, along with solid char and combustible gas. Bio-oil can be utilized for heat and power generation as well as it can be used as a feedstock for pure chemicals production. Over the last decades, numerous researches have been conducted in order to develop the process in terms of reactor design and process optimization in order to achieve the high yield of liquid with high organics and less water content. The aim of this review is to provide the state of the art on fast pyrolysis of biomass with some suggestions presented on upgrading the bio-oil. Based on the recent reactor configurations, current status of biomass fast pyrolysis in commercial scale around the world, the fuel and chemical characteristic of bio-oil compared to the conventional fossil fuels, and the potential application of bio-oil in the future, some recommendations are proposed.


2012 ◽  
Vol 608-609 ◽  
pp. 231-235
Author(s):  
Chao Wang ◽  
Guan Yi Chen ◽  
Wei Juan Lan

Bio-oil derived from biomass fast pyrolysis and biodiesel are all clean and renewable energy, which have been paid more and more attention by relevant researchers. The technology of biomass pyrolysis oil’s refining and producing second generation biodiesel by hydrotreating process are developed rapidly. This article presents the new research progress in the bio-oil hydrotreating refining for fuel.


2018 ◽  
Vol 3 (7) ◽  
pp. 33
Author(s):  
Asmaa Ali Mohammed Ali ◽  
Mustafa Abbas Mustafa ◽  
Kamal Eldin Eltayeb Yassin

The increasing demand for transportation fuel, due to increased urbanization, is now compounded by depleting and unstable crude oil reserves. Furthermore, the volatile market and the negative environmental impact of fossil fuels have driven the usage of biomass as a potential energy source. Of particular interest are biomass waste and baobab shells present an interesting option. The objective of this study is to produce bio oil by a fast pyrolysis process from baobab shells. The effect of reaction temperature, biomass particle size and fluidizing gas flow rate on the liquid product yield are investigated. The maximum liquid yield obtained was 36.6% at 500 OC at a N2 gas flowrate of 11.6 l/min and a particle size of less than 0.5 mm.


Sign in / Sign up

Export Citation Format

Share Document