scholarly journals Low Dose Monosodium Glutamate Induced Oxidative Damage and Histopathological Changes on the Renal of Male Rats

2019 ◽  
Vol 17 (SI) ◽  
pp. 33-38
Author(s):  
SITI FATHIAH MASRE ◽  
NUR NAIMAH NANI ◽  
NURUL ATHIRAH RAZALI ◽  
NUR AFIZAH YUSOFF ◽  
IZATUS SHIMA TAIB
2019 ◽  
Vol 17 (SI) ◽  
pp. 33-38
Author(s):  
SITI FATHIAH MASRE ◽  
NUR NAIMAH NANI ◽  
NURUL ATHIRAH RAZALI ◽  
NUR AFIZAH YUSOFF ◽  
IZATUS SHIMA TAIB

2021 ◽  
Vol 81 ◽  
pp. 109939
Author(s):  
Marcos Mônico-Neto ◽  
Kil Sun Lee ◽  
Márcio Henrique Mello da Luz ◽  
Jessica Monteiro Volejnik Pino ◽  
Daniel Araki Ribeiro ◽  
...  

Author(s):  
Olga Wronikowska ◽  
Maria Zykubek ◽  
Łukasz Kurach ◽  
Agnieszka Michalak ◽  
Anna Boguszewska-Czubara ◽  
...  

Abstract Rationale Mephedrone is a frequently overused drug of abuse that belongs to the group of novel psychoactive substances. Although its mechanism of action, as well as toxic and psychoactive effects, has been widely studied, the role of different factors that could contribute to the increased vulnerability to mephedrone abuse is still poorly understood. Objectives The aim of the presented study was to assess the impact of several factors (sex differences, social-conditioning, and chronic mild unpredictable stress — CMUS) on the liability to mephedrone-induced reward in Wistar rats. Methods The rewarding effects of mephedrone in male and female rats were assessed using the conditioned place preference (CPP) procedure. Furthermore, the impact of social factor and stress was evaluated in male rats using social-CPP and CMUS-dependent CPP, respectively. Results Mephedrone induced classic-CPP in female (10 mg/kg), as well as in male (10 and 20 mg/kg) rats. However, the impact of mephedrone treatment during social-CPP was highly dose-dependent as the rewarding effects of low dose of mephedrone (5 mg/kg; non-active in classic-CPP) were potentiated when administered during social-conditioning. Interestingly, social-conditioning with a higher dose of 20 mg/kg (that induced classic-CPP) was able to reverse these effects. Finally, CMUS potentiated rewarding effects of a low dose of mephedrone (5 mg/kg) and increased the level of corticosterone in rats’ prefrontal cortex and hippocampus. Conclusions Altogether, the presented results give new insight into possible factors underlying the vulnerability to mephedrone abuse and can serve as a basis for further studies assessing mechanisms underlying observed effects.


2009 ◽  
Vol 78 (4) ◽  
pp. 615-620 ◽  
Author(s):  
Hayati Yuksel ◽  
Erkan Karadas ◽  
Hikmet Keles ◽  
Hasan Huseyin Demirel

In this study, experimentally lindane-induced histopathological changes and proliferation and/or apoptosis in germ cells in the rat testes were investigated. A total of 40 healthy fertile 3-month-old male rats were used. Animals were divided into 4 groups, each containing 10 rats. Group 1 (control) was given only pure olive oil, Groups 2, 3 and 4 were administered lindane at 10, 20 and 40 mg/kg/bw, respectively, by gastric gavage for 30 days. Microscopically, degenerative changes were observed in the lindane-treated groups. For proliferative activity PCNA immunolabelling and for germ cells apoptosis TUNEL methods were performed. Although a strong PCNA positivity in the control group was observed, a gradual decrease was noted in the lindane-treated groups especially at higher doses. Significant increases of apoptosis were seen in the lindane-treated groups compared to the control group. A decrease in testosterone concentrations was observed in lindane-treated groups compared to the control group. The study indicates that high-dose lindane intoxication contributes to the suppression of spermatogenesis through a reduction of germ cell proliferation and an increase of germ cell death in rat testes.


2021 ◽  
Author(s):  
Eric D. Melonakos ◽  
Morgan J. Siegmann ◽  
Charles Rey ◽  
Christopher O’Brien ◽  
Ksenia K. Nikolaeva ◽  
...  

Background Parabrachial nucleus excitation reduces cortical delta oscillation (0.5 to 4 Hz) power and recovery time associated with anesthetics that enhance γ-aminobutyric acid type A receptor action. The effects of parabrachial nucleus excitation on anesthetics with other molecular targets, such as dexmedetomidine and ketamine, remain unknown. The hypothesis was that parabrachial nucleus excitation would cause arousal during dexmedetomidine and ketamine anesthesia. Methods Designer Receptors Exclusively Activated by Designer Drugs were used to excite calcium/calmodulin–dependent protein kinase 2α–positive neurons in the parabrachial nucleus region of adult male rats without anesthesia (nine rats), with dexmedetomidine (low dose: 0.3 µg · kg−1 · min−1 for 45 min, eight rats; high dose: 4.5 µg · kg−1 · min−1 for 10 min, seven rats), or with ketamine (low dose: 2 mg · kg−1 · min−1 for 30 min, seven rats; high dose: 4 mg · kg−1 · min−1 for 15 min, eight rats). For control experiments (same rats and treatments), the Designer Receptors Exclusively Activated by Designer Drugs were not excited. The electroencephalogram and anesthesia recovery times were recorded and analyzed. Results Parabrachial nucleus excitation reduced delta power in the prefrontal electroencephalogram with low-dose dexmedetomidine for the 150-min analyzed period, excepting two brief periods (peak median bootstrapped difference [clozapine-N-oxide – saline] during dexmedetomidine infusion = −6.06 [99% CI = −12.36 to −1.48] dB, P = 0.007). However, parabrachial nucleus excitation was less effective at reducing delta power with high-dose dexmedetomidine and low- and high-dose ketamine (peak median bootstrapped differences during high-dose [dexmedetomidine, ketamine] infusions = [−1.93, −0.87] dB, 99% CI = [−4.16 to −0.56, −1.62 to −0.18] dB, P = [0.006, 0.019]; low-dose ketamine had no statistically significant decreases during the infusion). Recovery time differences with parabrachial nucleus excitation were not statistically significant for dexmedetomidine (median difference for [low, high] dose = [1.63, 11.01] min, 95% CI = [−20.06 to 14.14, −20.84 to 23.67] min, P = [0.945, 0.297]) nor low-dose ketamine (median difference = 12.82 [95% CI: −3.20 to 39.58] min, P = 0.109) but were significantly longer for high-dose ketamine (median difference = 11.38 [95% CI: 1.81 to 24.67] min, P = 0.016). Conclusions These results suggest that the effectiveness of parabrachial nucleus excitation to change the neurophysiologic and behavioral effects of anesthesia depends on the anesthetic’s molecular target. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Sign in / Sign up

Export Citation Format

Share Document