scholarly journals Microstructural Refinement and Corrosion Resistance Improvement of Heat-Treated A356 Alloy Processed by Equal Channel Angular Pressing

2019 ◽  
Vol 48 (12) ◽  
pp. 2749-2757
Author(s):  
M.A. Gebril ◽  
M.Z. Omar ◽  
N.K. Othman ◽  
I.F. Mohamed
Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 303 ◽  
Author(s):  
Mohamed Gebril ◽  
Mohd Omar ◽  
Intan Mohamed ◽  
Norinsan Othman

As-cast and semisolid casting using a cooling slope A356 alloy were processed by equal channel angular pressing (ECAP) for Si and grain refinement. The ECAP was conducted at room temperature in a mold, with a channel angle of 120°, and this resulted in a significant size reduction of grain and Si particles from 170.5 and 4.22 to 23.12 and 0.71 µm, respectively, after six passes of heat-treated cooling slope casting, using the ECAP process. The hardness increased with ECAP processing, from 61 HV, for the as-cast alloy, to 134 Hv, after six passes of heat-treated cooling slope casting. The corrosion resistance of the alloy improved, from 0.042 to 0.0012 mmy−1, after the ECAP process. In this work both the strength and corrosion resistance of the ECAPed A356 alloys were improved with the application of the cooling slope process than without (i.e., from the as-cast condition).


2013 ◽  
Vol 803 ◽  
pp. 226-229
Author(s):  
Da Ran Fang ◽  
Chun Liu ◽  
Feng Fang Liu

Al-3.9wt.%Cu alloy was subjected to equal channel angular pressing (ECAP) and subsequent low temperature annealing treatment, and the corrosion resistance of the samples was investigated by potentiodynamic polarization measurements in 3.5% NaCl solution. The results show that the corrosion rate of the ultrafine-grained alloy increases, in comparison with the coarse-grained alloy. Meanwhile, it is noted that the corrosion resistance of the alloy subjected to ECAP can be improved by relief annealing.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1678 ◽  
Author(s):  
Chun Chiu ◽  
Hong-Min Huang

Mg97Zn1Y2 (at %) alloy with a long period stacking ordered (LPSO) phase has attracted a great deal of attention due to its excellent mechanical properties. It has been reported that this alloy could be fabricated by warm extrusion of rapid solidified alloy powders. In this study, an alternative route combining mechanical milling and equal channel angular pressing (ECAP) was selected to produce the bulk Mg97Zn1Y2 alloy. Microstructural characterization, mechanical properties and corrosion behavior of the ECAP-compacted alloys were studied. The as-cast alloy contained α-Mg and LPSO-Mg12Zn1Y1 phase. In the as-milled powder, the LPSO phase decomposed and formed Mg24Y5 phase. The ECAP-compacted alloy had identical phases to those of the as-milled sample. The compacted alloy exhibited a hardness of 120 HV and a compressive yield strength of 308 MPa, which were higher than those of the as-cast counterpart. The compacted alloy had better corrosion resistance, which was attributed to the reduced volume fraction of the secondary phase resulting in lower microgalvanic corrosion in the compacted alloy. The increase in Y content in the α-Mg matrix also contributed to the improvement of corrosion resistance.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 950 ◽  
Author(s):  
Zequn Yu ◽  
Yuecheng Dong ◽  
Xin Li ◽  
Jingzhe Niu ◽  
Igor Alexandrov ◽  
...  

The aim of this study was to investigate the corrosion resistance of ultrafine-grained (UFG) Ti-6Al-7Nb fabricated by equal channel angular pressing (ECAP) and coarse-grained (CG) Ti- 6Al- 7Nb. The microstructure of each specimen was investigated by the electron backscattered diffraction (EBSD) method. The corrosion behavior of each specimen was determined by electrochemical measurement in Ringer’s solution. The surface corroded morphologies and oxide film formed on Ti-6Al-7Nb alloy after electrochemical measurement were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). EBSD investigation shows that the grain size of UFG Ti-6Al-7Nb decreased to ~0.4 µm, accompanied by low angle grain boundaries (LAGBs) accounting for 39%. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) results indicated that UFG Ti-6Al-7Nb alloy possessed a better corrosion resistance. The surface corroded morphologies revealed many small and shallow corrosion pits, which can be attributed to the good compactness of the oxide film and a rapid self- repairing ability of the UFG Ti-6Al-7Nb alloy.


2016 ◽  
Vol 81 (2) ◽  
pp. 55-61 ◽  
Author(s):  
M. Ilieva ◽  
R. Radev

Purpose: The present study compares the corrosion behaviour of overaged AA 7075 before and after equal channel angular pressing ECAP in two media, containing chlorides, in order to answer the question how grain refinement of aluminium alloys influences their corrosion properties.Design/methodology/approach: The effect of equal channel angular pressing ECAP on corrosion behaviour of aluminium alloy AA 7075 was studied in two water solutions, containing chloride ions: 1) 0.01 M Na2SO4 with addition of 0.01%Cl-, and 2) 3g/l H2O2 and 57g/l NaCl. The changes in electrochemical characteristics, provoked by grain size refinement after equal channel angular pressing ECAP, were found using potentiodynamic polarisation. Steady state potential, corrosion potential, corrosion current density; breakdown (pitting) potential of overaged and deformed by equal channel angular pressing ECAP aluminium alloy AA 7075 were measured.Findings: In the environment with lower chloride concentration equal channel angular pressing ECAP process led to increase in pitting corrosion resistance and in the medium with higher chloride concentration - to decrease in pitting corrosion resistance. That way grain refinement does not demonstrate a uni-directional influence on corrosion resistance of AA 70775.Research limitations/implications: The results suggest the possibility for development of materials having the same chemical composition but with different corrosion resistance to different environments.Originality/value: The paper presents the corrosion behaviour of ultrafine-grained aluminium alloy AA 7075 and the influence of the chloride ions concentration in the corrosion medium on this behaviour.


2010 ◽  
Vol 667-669 ◽  
pp. 421-426 ◽  
Author(s):  
M.X. Yang ◽  
Gang Yang ◽  
Zheng Dong Liu ◽  
Cun Yu Wang ◽  
C.X. Huang

An 18Ni (C-250) maraging steel was successfully processed by equal channel angular pressing (ECAP) for a single pass at room temperature. Microstructural observations showed that the martensite laths of 18Ni maraging steel were elongated to more narrow bands with a width of 100-200 nm after ECAP deformation. After ageing treatment, many nano-sized precipitates distributed uniformly within the refined martensite lathes. In comparison with the tensile strength (1940 MPa) of general used steel (solution + aging treatment), the tensile strength of the sample processed by ECAP and subsequent aging treatment was enhanced for more than 100 MPa (above 2050 MPa). The enhancement of tensile properties was attributed to microstructural refinement and uniformly distributed nano-precipitates.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5117
Author(s):  
Yanhuai Wang ◽  
Xin Li ◽  
I. V. Alexandrov ◽  
Li Ma ◽  
Yuecheng Dong ◽  
...  

In the present study, the unique bimodal grain size distribution microstructure with the ultrafine substrate and embedded macro grains was fabricated by a traditional hot-rolling process in a novel low-cost Ti-2Fe-0.1B titanium alloy, which possesses a good combination of strength (around 663 MPa) and ductility (around 30%) without any post heat treatment. Meanwhile, the mechanical behavior and corrosion resistance of hot-rolled Ti-2Fe-0.1B alloy after equal channel angular pressing (ECAP) deformation were studied. Results indicated that the average grain size decreased to 0.24 μm after 4 passes ECAP deformation, which led to the enhancement of tensile strength to around 854 MPa and good ductility to around 15%. In addition, corrosion resistance was also improved after ECAP due to the rapid self-repairing and thicker passivation film. Our study revealed that the novel low-cost titanium alloy after hot-rolling and ECAP could be used instead of Ti-6Al-4V in some industrial applications due to similar mechanical behavior and better corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document