scholarly journals Development of soybean somatic embryos under different light spectra

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anastasiya V. Micheeva ◽  
◽  
Olga V. Nakonechnaya ◽  
Evgeniy P Subbotin ◽  
Olga V. Grishchenko ◽  
...  

Soybean (Glycine max (L.) Merr. cv. 'Primorskaya 28') plantlet development from somatic embryos (embryoids) under different spectra was studied. Light irradiation with intensity of 48 μmol/(m2·s) was generated by LEDs (light emitting diodes) with various spectra: cold white (CW), white (W), warm white (WW), full spectrum (FS, 450 nm and 660 nm), red (R, 630 nm), blue (B, 440 nm), and sun box (SB, close to the sun spectrum at wavelength range 440–660 nm). Fluorescent lamps were used as a control illumination (K). Our results showed that experimental LED lights with different spectra possessed the potential to positively affect the development of soybean plantlets from embryoid phase to a full-fledged plantlet, ready to be transferred into soil. The best effect was observed for the FS, which provided development of the highest plantlets. SB light was promising after one month of cultivation, but provided no significant differences in plantlets growth at the end of the experiment. A tendency to the lower growth was observed for plantlets under CW, W, WW, and K. Red light did not provide notable shoot elongation, as was supposed to. Investigations will be continued to clarify and refine the obtained data on the effect of light spectra on soybean plantlet development from embryoids.

2020 ◽  
Vol 3 (2) ◽  
pp. 161-176
Author(s):  
Jillian A Forsyth ◽  
Lauren A Erland ◽  
Paul R Shipley ◽  
Susan J Murch

Light mediates plant growth through diverse mechanisms and signaling networks including plant growth regulators (PGRs). We hypothesized that a novel class of PGRs, the indoleamines, are plant signaling molecules that perceive changes in light composition and initiate a cascade of metabolic responses. We used three Scutellaria model species (skullcap): S. lateriflora, S. galericulata and S. racemosa that produce high levels of melatonin and serotonin to investigate this hypothesis. Axenic Scutellaria cultures were exposed to red, blue, green or full spectrum white light spectra provided by light emitting diode (LED) lighting systems, or daylight fluorescent bulbs. Melatonin (MEL), serotonin (5HT), abscisic acid (ABA), auxin (IAA), and jasmonic acid (JA), were quantified by liquid chromatography with tandem mass spectrometry. Melatonin was detected consistently in plants grown under blue light in all species of Scutellaria. In S. galericulata, significant quantities of ABA were detected in plants grown under white light but not detected in plants grown under other light spectra.  In timeline studies of S. racemosa plants exposed to limited red or blue light spectra had significantly reduced levels of tryptamine (TRM), 5HT and MEL in the shoots initially but melatonin was detected after 12 hours and quantifiable amounts of 5HT were detected after 7 days. Supplementation of the culture medium with MEL or 5HT did not change the pattern of MEL in blue light grown cultures but did change patterns of 5HT accumulation.  5HT was highest in plants grown under red light immediately after culture and decreased over 7 days.  These data indicate that the relative amounts of MEL and 5HT are responsive to light spectra and redirect metabolic resources to enable plant adaptations to changing environments.   


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1351
Author(s):  
Chia-Chen Chen ◽  
Maw-Rong Lee ◽  
Chi-Rei Wu ◽  
Hsin-Ju Ke ◽  
Hui-Min Xie ◽  
...  

Investigations were carried out to study the effects of light-emitting diode (LED) lights on growth and development of isosteroidal alkaloids in embryogenic calli of Fritillaria cirrhosa D. Don, an important traditional Chinese medicine herb. Calli were cultured in glass bottles, each containing 100 mL of Murashige and Skoog’s basal medium supplemented with 2% sucrose and 0.4% gellan gum powder, a gelling agent. These bottles were incubated in a specially designed plant growth chamber equipped with eight different LED lights consisting of single or combinations of four different light spectra emitting blue (450 nm), green (525 nm), red (660 nm), and far-red (730 nm) light. After three months of incubation, morphological changes in embryogenic calli were recorded, and LC-MS/MS analysis of cultures was carried out for peimisine, sipeimine, peiminine, and peimine. The highest number of somatic embryos and the maximum fresh weight was recorded in calli incubated under red (9R), infrared (9IR), and a combination of red+blue+infrared (3R3B3IR), respectively, in decreasing order. The highest contents of peimisine, peiminine, and peimine were recorded under red (9R) and infrared (9IR) lights, respectively. Eight LED lights had significant effects on the morphogenesis of embryogenic calli of F. cirrhosa D. Don and contents of isosteroidal alkaloids.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1075
Author(s):  
Bo-Sen Wu ◽  
Sarah MacPherson ◽  
Mark Lefsrud

Red and blue light are the principal wavelengths responsible for driving photosynthetic activity, yet amber light (595 nm) has the highest quantum efficiency and amber-rich high pressure sodium lamps result in superior or comparable plant performance. On this basis, we investigated how lettuce plant growth and photosynthetic activity were influenced by broad and narrow light spectra in the 590–630 nm range, by creating amber and red light-emitting diode (LED) spectra that are not commercially available. Four different light spectra were outfitted from existing LEDs using shortpass and notch filters: a double peak spectrum (595 and 655 nm; referred to as 595 + 655-nm light) that excluded 630-nm light, 595-nm, 613-nm, and 633-nm light emitting at an irradiance level of 50 W·m−2 (243–267 µmol·m−2·s−1). Shifting LED wavelengths from 595 nm to 633 nm and from 595 nm to 613 nm resulted in a biomass yield decrease of ~50% and ~80%, respectively. When 630-nm light is blocked, lettuce displayed expanded plant structures and the absence of purple pigmentation. This report presents a new and feasible approach to plant photobiology studies, by removing certain wavelengths to assess and investigate wavelength effect on plant growth and photosynthesis. Findings indicate that amber light is superior to red light for promoting photosynthetic activity and plant productivity, and this could set precedence for future work aimed at maximizing plant productivity in controlled environment agriculture.


HortScience ◽  
2010 ◽  
Vol 45 (12) ◽  
pp. 1809-1814 ◽  
Author(s):  
Masahumi Johkan ◽  
Kazuhiro Shoji ◽  
Fumiyuki Goto ◽  
Shin-nosuke Hashida ◽  
Toshihiro Yoshihara

In this study, we determined the effects of raising seedlings with different light spectra such as with blue, red, and blue + red light-emitting diode (LED) lights on seedling quality and yield of red leaf lettuce plants. The light treatments we used were applied for a period of 1 week and consisted of 100 μmol·m−2·s−1 of blue light, simultaneous irradiation with 50 μmol·m−2·s−1 of blue light and 50 μmol·m−2·s−1 of red light, and 100 μmol·m−2·s−1 of red light. At the end of the light treatment, that is 17 days after sowing (DAS), the leaf area and shoot fresh weight (FW) of the lettuce seedlings treated with red light increased by 33% and 25%, respectively, and the dry weight of the shoots and roots of the lettuce seedlings treated with blue-containing LED lights increased by greater than 29% and greater than 83% compared with seedlings grown under a white fluorescent lamp (FL). The shoot/root ratio and specific leaf area of plants irradiated with blue-containing LED lights decreased. At 45 DAS, higher leaf areas and FWs were obtained in lettuce plants treated with blue-containing LED lights. The total chlorophyll (Chl) contents in lettuce plants treated with blue-containing and red lights were less than that of lettuce plants treated with FL, but the Chl a/b ratio and carotenoid content increased under blue-containing LED lights. Polyphenol contents and the total antioxidant status (TAS) were greater in lettuce seedlings treated with blue-containing LED lights than in those treated with FL at 17 DAS. The higher polyphenol contents and TAS in lettuce seedlings at 17 DAS decreased in lettuce plants at 45 DAS. In conclusion, our results indicate that raising seedlings treated with blue light promoted the growth of lettuce plants after transplanting. This is likely because of high shoot and root biomasses, a high content of photosynthetic pigments, and high antioxidant activities in the lettuce seedlings before transplanting. The compact morphology of lettuce seedlings treated with blue LED light would be also useful for transplanting.


2015 ◽  
Vol 370 (1667) ◽  
pp. 20140128 ◽  
Author(s):  
Maaike de Jong ◽  
Jenny Q. Ouyang ◽  
Arnaud Da Silva ◽  
Roy H. A. van Grunsven ◽  
Bart Kempenaers ◽  
...  

The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit ( Parus major ) and pied flycatcher ( Ficedula hypoleuca ) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of light treatment on breeding densities, clutch size, probability of brood failure, number of fledglings and adult survival. The finding that light colour may have differential effects opens up the possibility to mitigate negative ecological effects of nocturnal illumination by using different light spectra.


2021 ◽  
Vol 15 (2) ◽  
pp. 203-209
Author(s):  
Li Qiao ◽  
Shibao Guo ◽  
Yinli Jin ◽  
Chunsheng Wang ◽  
Jian Yin ◽  
...  

To investigate the phototaxis and photophobism behaviors and the gender differences of S. punctaria in response to different light spectra, 18 lights with wavelengths 370–600 nm were used, and effects of green spectrum (520–525 nm) and yellow spectrum (590–595 nm) on the oviposition, hatching rate, eclosion rate and longevity of S. punctaria (indoor fresh leaf-bred for 5 generations) were studied. The results showed that under the light of 370–665 nm, both female and male adults of S. punctaria had the phototropic and photoevasive behaviors (showed multi peaks), with females tended to orange and violet lights (395–400 nm); males tended to amber and violet light (370–375 nm). After 520–525 nm and 590–595 nm light irradiation at night, the number of oviposition decreased by 55.70% and 44% (significant difference); and the hatching rate decreased by 13.33% and 9%, respectively. Both the above two lights have effects on the pre-oviposition and average oviposition period, and have significant effect on the longevity of female adults, while no significant effect on male adults; and both the longevity of female and male adults was prolonged with the increased population density. This study is expected to provide a reference for the research and biocontrol of S. punctaria.


HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 380-383 ◽  
Author(s):  
Neil C. Yorio ◽  
Gregory D. Goins ◽  
Hollie R. Kagie ◽  
Raymond M. Wheeler ◽  
John C. Sager

Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 μmol·m-2·s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 307 ◽  
Author(s):  
Do Manh Cuong ◽  
Tai Wook Ha ◽  
Chang Ha Park ◽  
Nam Su Kim ◽  
Hyeon Ji Yeo ◽  
...  

Phenylpropanoids are naturally occurring compounds that exert beneficial pharmacological effects on human health. Phenylpropanoids can act as antioxidants and are involved in resistance to ultraviolet light and cancer; these compounds possess anti-inflammatory, antiviral, and antibacterial activity, and aid in wound healing. The expression of genes involved in phenylpropanoid biosynthesis, and consequent accumulation of phenylpropanoids in wheat sprout under conditions of stress, have not been extensively studied. This is the first study to examine the effects of light-emitting diodes (LED) on the expression of genes involved in phenylpropanoid biosynthesis and accumulation of phenylpropanoids in wheat sprouts. Our results, obtained using qRT-PCR and HPLC analyses, indicate that white light (380 nm) was the optimal wavelength for epicatechin biosynthesis in wheat sprouts. Compared with the effects of white light, blue light (470 nm) enhanced the accumulation of gallic acid and quercetin, but decreased the levels of p-coumaric acid and epicatechin; red light (660 nm) increased the accumulation of ferulic acid at 8 day and p-coumaric acid at 12 day. Compared gene expression with phenylpropanoid content showed that TaPAL3, TaPAL4, and TaDFR maybe important genes in phenylpropanoid biosynthesis in wheat sprout. This study provides insights into the effects of led lights on phenylpropanoid production in wheat sprouts. This knowledge will help improve secondary metabolite production in wheat sprouts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Filippos Bantis ◽  
Emmanuel Panteris ◽  
Christodoulos Dangitsis ◽  
Esther Carrera ◽  
Athanasios Koukounaras

AbstractThe wound inflicted during grafting of watermelon seedlings requires rapid and sufficient vascular development which is affected by light quality. Our objective was to investigate the effect of light spectra emitted by light-emitting diodes (LEDs) during healing of grafted watermelon (Citrullus lanatus) seedlings on their vascular development, physiological and phytohormonal profile, and root architecture. Three LEDs emitting red (R), blue (B), and RB with 12% blue (12B) were tested in a healing chamber. During the first three days, the photosynthetic apparatus portrayed by PIABS, φP0, ψE0, and ΔVIP was less damaged and faster repaired in B-treated seedlings. B and 12B promoted vascular reconnection and root development (length, surface area and volume). This was the result of signaling cascade between phytohormones such as indole-3-acetic acid and others. After vascular reconnection the seedlings switched lights for 3 more days and the picture was reversed. Seedlings treated with B for the first 3 days and R for days 4 to 6 had better photosynthetic characteristics, root system development, morphological, shoot and root biomass, and quality (i.e. Dickson’s quality index) characteristics. We concluded that blue light is important during the first 3 days of healing, while the presence of red is necessary after vascular reconnection.


2021 ◽  
Vol 20 (2) ◽  
pp. 13-22
Author(s):  
Bożena Matysiak ◽  
Artur Kowalski

Growth, morphological parameters, photosynthetic performance and nitrogen status were investigated in leafy herbs grown in light-limited time in a greenhouse under different light spectra emitted by LEDs. Fluorescence-based sensors that detect crop N status and maximum photochemical efficiency of photosystem II were used in this study. Four light treatments with the ratio of Red, Blue and White LEDs including 1) R40 + B50 + W10, 2) R70 + B20 + W10, 3) R70 + B20 + W10 + Far-Red and 4) White LEDs as control were used in this study. Dominant red light and/or white LED lights at 200 µmol m–2 s–1 at plant level and a 12 h photoperiod provided the most favourable conditions for plant growth and development compared to a high proportion of blue light (R40 + B50 + W10). However, plants grown under a high proportion of blue light had a higher chlorophyll index and nitrogen balance index (NBI) than under dominant red light treatments. Our study indicates the significant potential of fluorescence-based sensors in photobiology research as well as in the production of leafy herbs under LED lights.


Sign in / Sign up

Export Citation Format

Share Document