scholarly journals THE GROWTH, PHOTOSYNTHETIC PARAMETERS AND NITROGEN STATUS OF BASIL, CORIANDER AND OREGANO GROWN UNDER DIFFERENT LED LIGHT SPECTRA

2021 ◽  
Vol 20 (2) ◽  
pp. 13-22
Author(s):  
Bożena Matysiak ◽  
Artur Kowalski

Growth, morphological parameters, photosynthetic performance and nitrogen status were investigated in leafy herbs grown in light-limited time in a greenhouse under different light spectra emitted by LEDs. Fluorescence-based sensors that detect crop N status and maximum photochemical efficiency of photosystem II were used in this study. Four light treatments with the ratio of Red, Blue and White LEDs including 1) R40 + B50 + W10, 2) R70 + B20 + W10, 3) R70 + B20 + W10 + Far-Red and 4) White LEDs as control were used in this study. Dominant red light and/or white LED lights at 200 µmol m–2 s–1 at plant level and a 12 h photoperiod provided the most favourable conditions for plant growth and development compared to a high proportion of blue light (R40 + B50 + W10). However, plants grown under a high proportion of blue light had a higher chlorophyll index and nitrogen balance index (NBI) than under dominant red light treatments. Our study indicates the significant potential of fluorescence-based sensors in photobiology research as well as in the production of leafy herbs under LED lights.

Author(s):  
Rúben Marques ◽  
Sónia Cruz ◽  
Ricardo Calado ◽  
Ana Lillebø ◽  
Helena Abreu ◽  
...  

Abstract Codium tomentosum is a marine green macroalga with multiple value-added applications that is being successfully used as an extractive species in sustainable integrated multi-trophic aquaculture systems. Nonetheless, growth conditions of this species at an early development phase still require optimization. The present study addresses, under controlled laboratory conditions, the effects of photoperiod (long vs. short-day) and light spectra (white, blue, and red light) on growth and pigment composition of C. tomentosum. Relative growth rate was approximately 2× higher under long-day photoperiod (average of 39.2 and 20.1% week−1 for long and short-day, respectively). Concentrations per dry weight of major pigments such as chlorophyll a (Chla) and siphonoxanthin (Siph) were significantly higher under long-day photoperiod. Relative growth rates were higher under red light, intermediate under white light, and lower under blue light. These last results were rather surprising, as Siph-Chla/Chlb light harvesting complexes of Codium have increased absorption in the blue-green region of the light spectra. Changes in carbon allocation patterns caused by the spectral composition of light and overgrowth of green microalgae in blue light cultures could explain the differences recorded for relative growth rate. Long-day photoperiod and light sources with preferential emission at the red region of the light spectra were identified as optimal for growth of C. tomentosum at early development stages. These lighting conditions can reduce the time required to reach the necessary biomass before transfer to grow-out systems. Overall, these findings can shorten production time, increase macroalgal productivity, and enhance aquaculture revenues.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peian Zhang ◽  
Suwen Lu ◽  
Zhongjie Liu ◽  
Ting Zheng ◽  
Tianyu Dong ◽  
...  

Different light qualities have various impacts on the formation of fruit quality. The present study explored the influence of different visible light spectra (red, green, blue, and white) on the formation of quality traits and their metabolic pathways in grape berries. We found that blue light and red light had different effects on the berries. Compared with white light, blue light significantly increased the anthocyanins (malvidin-3-O-glucoside and peonidin-3-O-glucoside), volatile substances (alcohols and phenols), and soluble sugars (glucose and fructose), reduced the organic acids (citric acid and malic acid), whereas red light achieved the opposite effect. Transcriptomics and metabolomics analyses revealed that 2707, 2547, 2145, and 2583 differentially expressed genes (DEGs) and (221, 19), (254, 22), (189, 17), and (234, 80) significantly changed metabolites (SCMs) were filtered in the dark vs. blue light, green light, red light, and white light, respectively. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of the DEGs identified were involved in photosynthesis and biosynthesis of flavonoids and flavonols. Using weighted gene co-expression network analysis (WGCNA) of 23410 highly expressed genes, two modules significantly related to anthocyanins and soluble sugars were screened out. The anthocyanins accumulation is significantly associated with increased expression of transcription factors (VvHY5, VvMYB90, VvMYB86) and anthocyanin structural genes (VvC4H, Vv4CL, VvCHS3, VvCHI1, VvCHI2, VvDFR), while significantly negatively correlated with VvPIF4. VvISA1, VvISA2, VvAMY1, VvCWINV, VvβGLU12, and VvFK12 were all related to starch and sucrose metabolism. These findings help elucidate the characteristics of different light qualities on the formation of plant traits and can inform the use of supplemental light in the field and after harvest to improve the overall quality of fruit.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 824
Author(s):  
Nicholas B. Claypool ◽  
J. Heinrich Lieth

It has been shown that monochromatic red and blue light influence photosynthesis and morphology in cucumber. It is less clear how green light impacts photosynthetic performance or morphology, either alone or in concert with other wavelengths. In this study, cucumber (Cucumis sativus) was grown under monochromatic blue, green, and red light, dichromatic blue–green, red–blue, and red–green light, as well as light containing red, green, and blue wavelengths, with or without supplemental far-red light. Photosynthetic data collected under treatment spectra at light-limiting conditions showed that both red and green light enhance photosynthesis. However, photosynthetic data collected with a 90% red, 10% blue, 1000 µmol photons m−2 s−1, saturating light show significantly lower photosynthesis in the green, red, and red–green treatments, indicating a blue light enhancement due to photosystem stoichiometric differences. The red–green and green light treatments show improved photosynthetic capacity relative to red light, indicating partial remediation by green light. Despite a lower quantum efficiency and the lowest ambient photosynthesis levels, the monochromatic blue treatment produced among the tallest, most massive plants with the greatest leaf area and thickest stems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261585
Author(s):  
Majid Esmaeilizadeh ◽  
Mohammad Reza Malekzadeh Shamsabad ◽  
Hamid Reza Roosta ◽  
Piotr Dąbrowski ◽  
Marcin Rapacz ◽  
...  

Strawberry is one of the plants sensitive to salt and alkalinity stress. Light quality affects plant growth and metabolic activities. However, there is no clear answer in the literature on how light can improve the performance of the photosynthetic apparatus of this species under salt and alkalinity stress. The aim of this work was to investigate the effects of different spectra of supplemental light on strawberry (cv. Camarosa) under salt and alkalinity stress conditions. Light spectra of blue (with peak 460 nm), red (with peak 660 nm), blue/red (1:3), white/yellow (1:1) (400–700 nm) and ambient light were used as control. There were three stress treatments: control (no stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Under stress conditions, red and red/blue light had a positive effect on CO2 assimilation. In addition, blue/red light increased intrinsic water use efficiency (WUEi) under both stress conditions. Salinity and alkalinity stress decreased OJIP curves compared to the control treatment. Blue light caused an increase in its in plants under salinity stress, and red and blue/red light caused an increase in its in plants under alkalinity. Both salt and alkalinity stress caused a significant reduction in photosystem II (PSII) performance indices and quantum yield parameters. Adjustment of light spectra, especially red light, increased these parameters. It can be concluded that the adverse effects of salt and alkalinity stress on photosynthesis can be partially alleviated by changing the light spectra.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anastasiya V. Micheeva ◽  
◽  
Olga V. Nakonechnaya ◽  
Evgeniy P Subbotin ◽  
Olga V. Grishchenko ◽  
...  

Soybean (Glycine max (L.) Merr. cv. 'Primorskaya 28') plantlet development from somatic embryos (embryoids) under different spectra was studied. Light irradiation with intensity of 48 μmol/(m2·s) was generated by LEDs (light emitting diodes) with various spectra: cold white (CW), white (W), warm white (WW), full spectrum (FS, 450 nm and 660 nm), red (R, 630 nm), blue (B, 440 nm), and sun box (SB, close to the sun spectrum at wavelength range 440–660 nm). Fluorescent lamps were used as a control illumination (K). Our results showed that experimental LED lights with different spectra possessed the potential to positively affect the development of soybean plantlets from embryoid phase to a full-fledged plantlet, ready to be transferred into soil. The best effect was observed for the FS, which provided development of the highest plantlets. SB light was promising after one month of cultivation, but provided no significant differences in plantlets growth at the end of the experiment. A tendency to the lower growth was observed for plantlets under CW, W, WW, and K. Red light did not provide notable shoot elongation, as was supposed to. Investigations will be continued to clarify and refine the obtained data on the effect of light spectra on soybean plantlet development from embryoids.


1995 ◽  
Vol 22 (5) ◽  
pp. 737 ◽  
Author(s):  
D Nikolopoulos ◽  
Y Petropoulou ◽  
A Kyparissis ◽  
Y Manetas

The effects of enhanced UV-B radiation on Phlomis fruticosa L. were recorded during a 1- year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras, 38.3�N, 29.1�E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses, particularly water stress during summer. Actual, biologically equivalent UV-B doses were 8.55 and 11.21 kJ m-2 day-1 during the summer maximum (14 July) and 0.85 and 1.12 kJ m-2 day-1 during the winter minimum (27 December) for control and W-B plants respectively, while intermediate values were received for the rest of the year. lho seasonally separated effects could be distinguished. The first was a growth response, observed at late spring, in the absence of any simultaneous stress and at the period most favourable for this shrub, during which it shows maximum photosynthetic performance. The effect was an inhibition of new leaf development and premature falling of old leaves, leading to lower leaf numbers and total leaf areas for the rest of the experimental period. The second effect coincided with the summer drought, during which net photosynthesis, chlorophyll content and photochemical efficiency of photosystem II decreased in the controls, but a trend towards a further decrease in W-B irradiated plants was also evident. Changes in total carotenoids were negligible, leading to higher carotenoid to chlorophyll ratios under enhanced W-B radiation. Photosynthetic parameters recovered to the same levels in control and UV-B irradiated plants after the first heavy rains in autumn. At final harvest, considerable decreases in total dry mass were evident for UV-B irradiated plants, while plant height, UV-B-absorbing compounds, relative water content and leaf specific mass were unaffected during the whole experimental period. UV-B effects may depend not only on co-occumng natural stresses, but on the specific sensitivity of individual developmental stages as well, i.e. they may be season-specific.


HortScience ◽  
2010 ◽  
Vol 45 (12) ◽  
pp. 1809-1814 ◽  
Author(s):  
Masahumi Johkan ◽  
Kazuhiro Shoji ◽  
Fumiyuki Goto ◽  
Shin-nosuke Hashida ◽  
Toshihiro Yoshihara

In this study, we determined the effects of raising seedlings with different light spectra such as with blue, red, and blue + red light-emitting diode (LED) lights on seedling quality and yield of red leaf lettuce plants. The light treatments we used were applied for a period of 1 week and consisted of 100 μmol·m−2·s−1 of blue light, simultaneous irradiation with 50 μmol·m−2·s−1 of blue light and 50 μmol·m−2·s−1 of red light, and 100 μmol·m−2·s−1 of red light. At the end of the light treatment, that is 17 days after sowing (DAS), the leaf area and shoot fresh weight (FW) of the lettuce seedlings treated with red light increased by 33% and 25%, respectively, and the dry weight of the shoots and roots of the lettuce seedlings treated with blue-containing LED lights increased by greater than 29% and greater than 83% compared with seedlings grown under a white fluorescent lamp (FL). The shoot/root ratio and specific leaf area of plants irradiated with blue-containing LED lights decreased. At 45 DAS, higher leaf areas and FWs were obtained in lettuce plants treated with blue-containing LED lights. The total chlorophyll (Chl) contents in lettuce plants treated with blue-containing and red lights were less than that of lettuce plants treated with FL, but the Chl a/b ratio and carotenoid content increased under blue-containing LED lights. Polyphenol contents and the total antioxidant status (TAS) were greater in lettuce seedlings treated with blue-containing LED lights than in those treated with FL at 17 DAS. The higher polyphenol contents and TAS in lettuce seedlings at 17 DAS decreased in lettuce plants at 45 DAS. In conclusion, our results indicate that raising seedlings treated with blue light promoted the growth of lettuce plants after transplanting. This is likely because of high shoot and root biomasses, a high content of photosynthetic pigments, and high antioxidant activities in the lettuce seedlings before transplanting. The compact morphology of lettuce seedlings treated with blue LED light would be also useful for transplanting.


2015 ◽  
Vol 370 (1667) ◽  
pp. 20140128 ◽  
Author(s):  
Maaike de Jong ◽  
Jenny Q. Ouyang ◽  
Arnaud Da Silva ◽  
Roy H. A. van Grunsven ◽  
Bart Kempenaers ◽  
...  

The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit ( Parus major ) and pied flycatcher ( Ficedula hypoleuca ) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of light treatment on breeding densities, clutch size, probability of brood failure, number of fledglings and adult survival. The finding that light colour may have differential effects opens up the possibility to mitigate negative ecological effects of nocturnal illumination by using different light spectra.


2016 ◽  
Vol 24 ◽  
pp. 73-78
Author(s):  
L. M. Reshotko ◽  
S. V. Derevianko ◽  
O. O. Dmitruk ◽  
I. V. Volkova

It was found that the additional lighting affects habіtus of in vitro plants: red light correction increases the growth of potato cultivars such as Shchedrik, Tyras and Suvenir Chernihivskyi, and blue light correction leads to a significant reduction in height of Suvenir Chernihivskyi potato cultivar and to the accelerated formation of stolons in all tested varieties. The chlorophyll content in the leaves of potato plants was increased with additional lighting. It depended both on the light spectra and the reaction of varieties to lighting.


2016 ◽  
Vol 43 (11) ◽  
pp. 1003 ◽  
Author(s):  
William J. Percey ◽  
Andrew McMinn ◽  
Jayakumar Bose ◽  
Michael C. Breadmore ◽  
Rosanne M. Guijt ◽  
...  

The effects of NaCl stress and K+ nutrition on photosynthetic parameters of isolated chloroplasts were investigated using PAM fluorescence. Intact mesophyll cells were able to maintain optimal photosynthetic performance when exposed to salinity for more than 24 h whereas isolated chloroplasts showed declines in both the relative electron transport rate (rETR) and the maximal photochemical efficiency of PSII (Fv/Fm) within the first hour of treatment. The rETR was much more sensitive to salt stress compared with Fv/Fm, with 40% inhibition of rETR observed at apoplastic NaCl concentration as low as 20 mM. In isolated chloroplasts, absolute K+ concentrations were more essential for the maintenance of the optimal photochemical performance (Fv/Fm values) rather than sodium concentrations per se. Chloroplasts from halophyte species of quinoa (Chenopodium quinoa Willd.) and pigface (Carpobrotus rosii (Haw.) Schwantes) showed less than 18% decline in Fv/Fm under salinity, whereas the Fv/Fm decline in chloroplasts from glycophyte pea (Pisum sativum L.) and bean (Vicia faba L.) species was much stronger (31 and 47% respectively). Vanadate (a P-type ATPase inhibitor) significantly reduced Fv/Fm in both control and salinity treated chloroplasts (by 7 and 25% respectively), whereas no significant effects of gadolinium (blocker of non-selective cation channels) were observed in salt-treated chloroplasts. Tetraethyl ammonium (TEA) (K+ channel inhibitor) and amiloride (inhibitor of the Na+/H+ antiporter) increased the Fv/Fm of salinity treated chloroplasts by 16 and 17% respectively. These results suggest that chloroplasts’ ability to regulate ion transport across the envelope and thylakoid membranes play a critical role in leaf photosynthetic performance under salinity.


Sign in / Sign up

Export Citation Format

Share Document