scholarly journals Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species

2015 ◽  
Vol 370 (1667) ◽  
pp. 20140128 ◽  
Author(s):  
Maaike de Jong ◽  
Jenny Q. Ouyang ◽  
Arnaud Da Silva ◽  
Roy H. A. van Grunsven ◽  
Bart Kempenaers ◽  
...  

The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit ( Parus major ) and pied flycatcher ( Ficedula hypoleuca ) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of light treatment on breeding densities, clutch size, probability of brood failure, number of fledglings and adult survival. The finding that light colour may have differential effects opens up the possibility to mitigate negative ecological effects of nocturnal illumination by using different light spectra.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anastasiya V. Micheeva ◽  
◽  
Olga V. Nakonechnaya ◽  
Evgeniy P Subbotin ◽  
Olga V. Grishchenko ◽  
...  

Soybean (Glycine max (L.) Merr. cv. 'Primorskaya 28') plantlet development from somatic embryos (embryoids) under different spectra was studied. Light irradiation with intensity of 48 μmol/(m2·s) was generated by LEDs (light emitting diodes) with various spectra: cold white (CW), white (W), warm white (WW), full spectrum (FS, 450 nm and 660 nm), red (R, 630 nm), blue (B, 440 nm), and sun box (SB, close to the sun spectrum at wavelength range 440–660 nm). Fluorescent lamps were used as a control illumination (K). Our results showed that experimental LED lights with different spectra possessed the potential to positively affect the development of soybean plantlets from embryoid phase to a full-fledged plantlet, ready to be transferred into soil. The best effect was observed for the FS, which provided development of the highest plantlets. SB light was promising after one month of cultivation, but provided no significant differences in plantlets growth at the end of the experiment. A tendency to the lower growth was observed for plantlets under CW, W, WW, and K. Red light did not provide notable shoot elongation, as was supposed to. Investigations will be continued to clarify and refine the obtained data on the effect of light spectra on soybean plantlet development from embryoids.


2017 ◽  
Vol 2 (6) ◽  
pp. 529
Author(s):  
Chandra Kurnia Setiawan ◽  
Supriyadi Supriyadi ◽  
Umar Santoso ◽  
Gang Ma ◽  
Masaya Kato

Ascorbate is one of the most abundant soluble antioxidants in the plant. Multiple functions of ascorbate in photo protection have been proposed, including scavenging of reactive oxygen species generated by oxygen photoreduction and photorespiration. There is still unclear information relation to LED light with Ascorbate biosynthesis and metabolism, yellowing, chlorophyll content, and ethylene production in broccoli florets. The effect of light-emitting diodes (LED) light on ascorbate (AsA) biosynthesis and metabolism in broccoli (Brassica oleracea L. var. Italica) cultivar “Ryokurei” were studied using red (660 nm), blue (470 nm) and white LED lights as the light source and also no light treatment as the control. Gene expression involved in the biosynthesis and metabolism of AsA, AsA content, color, chlorophyll content and ethylene production rate on the postharvest broccoli were observed in 4 days. The result showed that after two days, red light treatment significantly (p < 0,05) delayed the decrease of ascorbate content. The result was supported by observations using Real-Time Quantitative RT-PCR showed that red light treatment can suppress mRNA level of BO-APX1, BO-APX2, and BO-sAPX on the third day. Observation of BO-GLDH mRNA level was increased in the third-day exposure of red LED light. Therefore red LED light showed up-regulated AsA biosynthesis transcriptional level. Enzymes which possibility responsible for AsA metabolism and biosynthesis in a row were Ascorbate Peroxide (APX) and L-Galactono-1,4-Lactone Dehydrogenase (GLDH). The regulation of this gene expression might contribute to the suppression of AsA reduction by red LED light treatment in broccoli. Red LED also showed suppression of yellowing and decline the chlorophyll content in postharvest broccoli florets. Keywords: ascorbate, LED; broccoli; gene expression; real-time quantitative RT-PCR.


1989 ◽  
Vol 19 (3) ◽  
pp. 585-590 ◽  
Author(s):  
F. Winton ◽  
T. Corn ◽  
L. W. Huson ◽  
C. Franey ◽  
J. Arendt ◽  
...  

SynopsisTen patients with seasonal affective disorder received the following treatments for 5 days each: (a) artificial daylight (2500 lux) from 20.00 to 23.00 and from 07.00 to 10.00 hours; (b) red light (300 lux) from 20.00 to 23.00 and from 07.00 to 10.00 hours; (c) artificial daylight (2500 lux) from 22.00 to 23.00 and from 07.00 to 08.00 hours. The antidepressant effect of treatment (a) was superior to that of treatment (b), suggesting that the effect of light treatment in winter depression is more than that of a placebo. The antidepressant effect of treatment (a) was superior to that of treatment (c), although these two treatments equally suppressed plasma melatonin concentrations. Consequently, in these patients there is a dissociation between the effect of light treatment on melatonin and the reduction of depression ratings.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Li ◽  
Tao Wu ◽  
Ke Huang ◽  
Yubing Liu ◽  
Mingyue Liu ◽  
...  

Light quality optimization is an efficient method for improving the growth and quality of lettuce in plant factories. In this study, lettuce seedlings were illuminated under different light-emitting diode (LED) lights, namely, red-blue (RB), red-blue-green (RBG), red-blue-purple (RBP), and red-blue-far-red (RBF) LED lights, to investigate the effect of light quality on growth, quality, and nitrogen metabolism. The combination of 75% red and 25% blue light was set as the basic light source, and 20% of green, purple and far-red light were added to basic light source, respectively. All the treatments were set to 200 μmol m–2 s–1. Results showed that the fresh weight and dry weight of aboveground lettuce under RBG, RBP, and RBF treatments were significantly lower than those under the RB treatment because of the decrease in the effective photon flux density for chlorophyll absorption. The vitamin C content of the lettuce leaves was increased by about 23% with the addition of purple light. For nitrate reduction, the addition of green light significantly increased the nitrite content of the lettuce leaves. It also promoted the reduction from nitrite to ammonium through the activation of the nitrite reductase (NiR) expression and enzyme activity. The nitrate and ammonium content decreased with the addition of purple light because of the inhibited NR and NiR expression and enzyme activity. For nitrogen assimilation, individual (e.g., Asp, Glu, and Leu) and total amino acids were induced to increase by adding green, purple, and far-red light. The addition of light was hypothesized to have inhibited protein biosynthesis, thereby causing the accumulation of amino acids. Correlation analysis showed that the relative expression levels between HY5 and NR/NiR presented a significantly negative correlation. Transcription factor HY5 might mediate the regulation of light quality on nitrogen metabolism by inhibiting NR and NiR expressions. It might also exert a negative effect on nitrate reduction. Further studies via genome editing techniques on the identification of HY5 functions for nitrate assimilation will be valuable. Nevertheless, the results of this work enrich the understanding of the effect of light quality on nitrate metabolism at the level of gene expression and enzyme activity.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170075 ◽  
Author(s):  
Kamiel Spoelstra ◽  
Roy H. A. van Grunsven ◽  
Jip J. C. Ramakers ◽  
Kim B. Ferguson ◽  
Thomas Raap ◽  
...  

Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed.


2021 ◽  
Vol 20 (2) ◽  
pp. 13-22
Author(s):  
Bożena Matysiak ◽  
Artur Kowalski

Growth, morphological parameters, photosynthetic performance and nitrogen status were investigated in leafy herbs grown in light-limited time in a greenhouse under different light spectra emitted by LEDs. Fluorescence-based sensors that detect crop N status and maximum photochemical efficiency of photosystem II were used in this study. Four light treatments with the ratio of Red, Blue and White LEDs including 1) R40 + B50 + W10, 2) R70 + B20 + W10, 3) R70 + B20 + W10 + Far-Red and 4) White LEDs as control were used in this study. Dominant red light and/or white LED lights at 200 µmol m–2 s–1 at plant level and a 12 h photoperiod provided the most favourable conditions for plant growth and development compared to a high proportion of blue light (R40 + B50 + W10). However, plants grown under a high proportion of blue light had a higher chlorophyll index and nitrogen balance index (NBI) than under dominant red light treatments. Our study indicates the significant potential of fluorescence-based sensors in photobiology research as well as in the production of leafy herbs under LED lights.


2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Biparental care systems are a valuable model to examine conflict, cooperation, and coordination between unrelated individuals, as the product of the interactions between the parents influences the fitness of both individuals. A common experimental technique for testing coordinated responses to changes in the costs of parental care is to temporarily handicap one parent, inducing a higher cost of providing care. However, dissimilarity in experimental designs of these studies has hindered interspecific comparisons of the patterns of cost distribution between parents and offspring. Here we apply a comparative experimental approach by handicapping a parent at nests of five bird species using the same experimental treatment. In some species, a decrease in care by a handicapped parent was compensated by its partner, while in others the increased costs of care were shunted to the offspring. Parental responses to an increased cost of care primarily depended on the total duration of care that offspring require. However, life history pace (i.e., adult survival and fecundity) did not influence parental decisions when faced with a higher cost of caring. Our study highlights that a greater attention to intergenerational trade-offs is warranted, particularly in species with a large burden of parental care. Moreover, we demonstrate that parental care decisions may be weighed more against physiological workload constraints than against future prospects of reproduction, supporting evidence that avian species may devote comparable amounts of energy into survival, regardless of life history strategy.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 809
Author(s):  
Alexandros Polyzois ◽  
Diana Kirilovsky ◽  
Thi-hanh Dufat ◽  
Sylvie Michel

Cryptophycin-1 is a cyanotoxin produced by filamentous cyanobacteria. It has been evaluated as an anticancer agent with great potential. However, its synthesis provides insufficient yield for industrial use. An alternative solution for metabolite efficient production is to stress cyanobacteria by modifying the environmental conditions of the culture (Nostoc sp. ATCC 53789). Here, we examined the effects of light photoperiod, wavelength, and intensity. In light photoperiod, photoperiods 24:0 and 16:8 (light:dark) were tested while in wavelength, orange-red light was compared with blue. Medium, high, and very high light intensity experiments were performed to test the effect of light stress. For a 10-day period, growth was measured, metabolite concentration was calculated through HPLC, and the related curves were drawn. The differentiation of light wavelength had a major effect on the culture, as orange-red filter contributed to noticeable increase in both growth and doubled the cyanotoxin concentration in comparison to blue light. Remarkably, constant light provides higher cryptophycin yield, but slightly lower growth rate. Lastly, the microorganism prefers medium light intensities for both growth and metabolite expression. The combination of these optimal conditions would contribute to the further exploitation of cryptophycin.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A287-A288
Author(s):  
Joey W Chan ◽  
Y K Wing ◽  
S P Lam ◽  
Shirley Xin Li ◽  
J Zhang

Abstract Introduction Drop out during treatment hampers therapeutic effect of interventions. The current study examines the possible predictors of drop out during the five-week light treatment in patients with unipolar non-seasonal depression and evening-chronotype. Methods Baseline characteristics including demographics, sleep diary parameters, light treatment prescribed, and early clinical outcomes changes were compared between the Drop out and Non drop out group. Logistic regression analysis was used to examine predictors for drop out. All data were analyzed in a modified intention to treat analysis with last observation carried forward approach. Results A total of 91 subjects (Female 79%, 46.3 ± 11.8 years old) were included in the analysis. There was no significant difference in the baseline demographic and clinical characteristics between the Drop out and Non drop out group. There was also no significant difference in the improvement of clinical parameters over the first week among the two groups. However, treatment non-adherence (in terms of compliance of less than 80% of prescribed duration) over the first treatment week predicts a five-fold increase in risk of drop out during light therapy. (OR: 5.85, CI: 1.414–24.205, p=0.015) after controlling for potential confounders including age, gender, treatment group, patient expectation, and treatment-emergent adverse events. Conclusion This study found that baseline clinical characteristics including depression severity and improvement of depressive symptoms in the initial week did not differ between the Drop out and Non drop out group. The drop out was also not affected by the type of light (dim red versus bright red light), indirectly supporting dim red light as a valid placebo in bright light therapy trial. Treatment adherence is the early phase of light treatment is an important predictor of drop out. Support (if any):


Sign in / Sign up

Export Citation Format

Share Document