scholarly journals Determination of the indirect physical and mechanical characteristics of sea ice – ulmate strength in bending

Author(s):  
I.A. Veprinyak ◽  
◽  
S.V. Koshkin ◽  
2021 ◽  
Vol 42 ◽  
pp. 57-62
Author(s):  
Maria Stoicănescu

The 1.4301 stainless steel is part of the category of austenitic stainless steels, steels which do no undergo heat treatments in general, as they are intended for hot plastic deformation in particular. The aim of the research presented in this paper was to obtain significantly improved characteristics of the resistance properties in relation to the values obtained under classical conditions, by applying heat treatments. Samples taken from the delivery state material underwent annealing, quenching and ageing heat treatments. Subsequently, the samples thus treated were subjected to tests enabling the determination of the correlations between the heat treatment parameters, the structure and the properties.


2019 ◽  
Vol 135 ◽  
pp. 01102
Author(s):  
Dmitriy Savenkov ◽  
Oleg Kirischiev ◽  
Ylia Kirischieva ◽  
Tatiana Tupolskikh ◽  
Tatiana Maltseva ◽  
...  

The article highlights the issues related to the study of physical and mechanical characteristics of bulk materials, namely internal friction coefficients in static and dynamic modes. An innovative device of the carousel type for determining the frictional characteristics of bulk materials is described, which allows to implement the tasks of practical determination of dynamic coefficients of internal friction. Presented the program, methodology and results of research on the practical study of the internal friction coefficient of typical bulk products of agricultural production in the range of linear velocities of displacement of layers from 0 to 2.79 m/s, the reliability of which is not lower than 0.878.


2014 ◽  
Vol 923 ◽  
pp. 81-84 ◽  
Author(s):  
Jiří Witzany ◽  
Tomáš Čejka ◽  
Radek Zigler

The experimental, in-situ and laboratory research has manifested a relatively large variance of the physical and mechanical characteristics of historical masonry found e.g. within a masonry wall, a massive masonry pillar etc. Artical presents the evaluation of the experimentally determined physical and mechanical characteristics of masonry members and the binder obtained by sampling specimens and by non-destructive measurements relies on the application of appropriate probabilistic methods.


Author(s):  
K.M. Kolmakov ◽  
A.E. Zverovshchikov ◽  
A.G. Skhirtladze ◽  
A.V. Sokolov

The article considers the ballistic parameters of the trajectories of high-density alloy particles moving in a gaseous medium, accompanied by a phase transition of the of the particle material. A technique has been developed for determining the parameters of the target depending on the physical and mechanical characteristics of the materials of the captured particles and target layers. The possibility of maintaining the spheroidal shape of particles during the electric arc dispersion of high-density alloys has been determined.


2018 ◽  
Vol 193 ◽  
pp. 03009 ◽  
Author(s):  
Larisa Safina ◽  
Aleksandr Shuvalov ◽  
Mikhail Kovalev

The article presents the results of the experimental determination of the physical and mechanical characteristics of rubber-metal vibration-proof supports used in the construction of facilities in the areas of increased seismic hazard. The testing was based on two necessities: to substantiate the possibility of using such a constructive seismic protection solution and to create reliable calculation models of the structures with rubber-metal support. More than thirty samples were tested in the laboratory under various loads and impacts. The elastomers were tested in accordance with the requirements written in EN-1337-3. The experiment was performed on three types of elastomer model samples to determine their vertical and horizontal stiffness, the tensile strength and modulus of elasticity and creep. The work was performed on INSTRON power equipment and a test rig equipped with MTS hydraulic jacks installed in the power frame. The testing results of elastomeric support models were confirmed by the determination of individual characteristics on the full size specimens at the corresponding load. Thus, the test has confirmed and proved the validity of the use of elastomeric bearings for seismic protection of a mall construction.


2014 ◽  
Vol 1040 ◽  
pp. 614-619
Author(s):  
Marija V. Chepak-Gizbrekht ◽  
E.V. Shvagrukova

Diffusion research is important for understanding of many processes based on mass transfer. In many respects, diffusion, determines physical and mechanical characteristics for new materials with fine-dispersed matter and a large number of grain boundaries and phases. Models of diffusion along grain boundaries and their modifications are widely known in literature, but they are not always applicable to nanomaterials due to indistinct determination of some notions. At the present paper the model of diffusion is presented, which considers boundaries and area near boundaries as a phase with special properties. Mass transfer between the volume of a grain and a boundary phase is taken into account. The approximate analytical solution of the problem is formulated. In the general case the problem is solved numerically. Non monotonic distributions of concentrations in volume are obtained.


2020 ◽  
Vol 66 (3) ◽  
pp. 293-320
Author(s):  
S. M. Kovalev ◽  
V. A. Borodkin ◽  
N. V. Kolabutin ◽  
A. A. Nubom ◽  
Ev. V. Shimanchuk ◽  
...  

On the “Transarktika-2019” expedition, works were carried out for determining the physical and mechanical characteristics of frost field of the first-year sea ice and the field of second-year ice. The thickness of the ice cover was determined by contact and non-contact methods, the temperature, salinity and density of ice, the strength of the samples at central bending and uniaxial compression, as well as the local (borehole) strength of ice were measured. Studies have shown that most of the field is an ice formation formed in the process of dynamic metamorphism. At the beginning of the expedition, an ice floe passed through a section of warm surface waters. This led to the disappearance of the openwork layer on the lower boundary of the ice and stopping the growth of ice from below. During the observation period, the average temperature and salinity of the deformed ice increased, while the average density decreased. The values of mechanical characteristics decreased with increasing temperature and brine volume. The average borehole strength were close to the values obtained by the quadratic approximation for ice in the area of the Ice Station “Cape of Baranov”. The physical and mechanical properties of the level ice are generally similar to the properties of ice, composed mainly of fibrous structures. The ratios between the borehole strength and the strength under uniaxial compression of ice samples drilled parallel to the ice surface were 4.5 and 4.7, which corresponds to the literature data. The thickness of the second-year sea ice at the place of work was 166 — 169 cm, the snow height was 27 cm, the raft of the ice surface above the water surface was 15 cm. The average ice temperature was –4.0 °C. Second-year ice can be divided into three parts that differ in their physical properties. The upper part (0 — 10 cm) was formed in the autumn. The second part (10 — 85 cm) is ice that has undergone seasonal thermometamorphic changes. The lower part was formed during the natural growth of ice from below at the current season.


2018 ◽  
Vol 34 (2) ◽  
pp. 745
Author(s):  
Τ. Α. ΧΡΙΣΤΟΔΟΥΛΟΠΟΥΛΟΥ ◽  
Π. ΤΣΩΛΗ - ΚΑΤΑΓΑ ◽  
Γ. Χ. ΚΟΥΚΗΣ ◽  
Ν. ΚΟΝΤΟΠΟΥΛΟΣ

This paper deals with the systematic study of the microstructural characteristics of clay sediments. These characteristics which are closely connected to the physical and mechanical character of the sediments, are concerned with: a)the structural constituents, b)the microporosity and c)the structural bonds of the sediments. For the determination of the structural characteristics of clay sediments the Scanning Electron Microscope (SEM) and the Optical Microscope are widely used with a supplementary mineralogical analysis of sediment components and the determination of several physical and mechanical characteristics. The observations under the microscope must be focused on the distribution of mineralogical facies and micropores, on the size and shape of clay (micro-)aggregates, as well as on the kind of authigenic facies (e.g. micrite, sparry calcite) which play the role of cementing material. The proposed methodology was applied to the study of the microstructures of marly sediments from Northern Péloponnèse and the following types of microstructures were determined: a)matrix-skeletal, mixed type, coarse dispersed of low orientation, b)matrix, coagulative, medium dispersed of medium orientation and c)crystallized-cementated, fine or medium dispersed of low orientation.


2021 ◽  
Vol 1040 ◽  
pp. 124-131
Author(s):  
Ljubov Aleksandrovna Bokhoeva ◽  
I.O. Bobarika ◽  
A.B. Baldanov ◽  
Vitaly Evdokimovich Rogov ◽  
Anna S. Chermoshentseva

Due to the intensive development of composite materials and technologies for producing parts from them, they are increasingly used in various industries, including the manufacture of products with increased requirements for the characteristics of final products (strength, stiffness, minimum weight, etc.). In this regard, the authors analyzed the possibility to optimize the layered structure of a composite material in order to give it a pronounced predictable anisotropy of properties required for the final product. Thus, the influence of the orientation of the fibers of the reinforcing material in different layers of the package and the number of layers of the package on the physical and mechanical characteristics of the hypothetical product were analyzed. The problem was solved through the example of the development of a wing for a hypothetical UAV.


Sign in / Sign up

Export Citation Format

Share Document